Как правильно выбрать процессор для настольного компьютера

Содержание:

Процессорные ядра

Некоторые устройства используют одноядерный процессор, в то время как другие могут иметь двухъядерный (или четырехъядерный и т.д.) Процессор. Работа двух процессорных блоков, работающих синхронно, означает, что центральный процессор может одновременно выполнять две команды каждую секунду, что значительно повышает производительность.

Некоторые CPU могут виртуализировать два ядра для каждого доступного физического ядра — метод, известный как Hyper-Threading. Виртуализация означает, что ЦП с четырьмя ядрами может функционировать так, как если бы он имел восемь, а дополнительные виртуальные ядра ЦП называются отдельными потоками. Физические ядра, тем не менее, работают лучше, чем виртуальные.

Если разрешить процессор, некоторые приложения могут использовать многопоточность. Если под потоком понимается единый элемент компьютерного процесса, то использование нескольких потоков в одном ядре ЦП означает, что большее количество инструкций можно понять и обработать одновременно. Некоторые программы могут использовать эту функцию на более чем одном ядре ЦП, что означает, что одновременно может обрабатываться еще больше задач.

Разгон процессора

Процессоры Intel Core с индексом «K» в конце маркировки имеют более высокую базовую частоту и разблокированный множитель. Их легко разгонять (повышать частоту) для увеличения производительности, но потребуется более дорогая материнская плата на чипсете Z-серии.

Все процессоры AMD FX и Ryzen можно разгонять путем изменения множителя, но разгонный потенциал у них поскромнее. Разгон процессоров Ryzen поддерживают материнские платы на чипсетах B350, X370.

В целом возможность разгона делает процессор более перспективным, так как в будущем при небольшой нехватке производительности его можно будет не менять, а просто разогнать.

Как создаются транзисторы процессора?

На отполированный кремниевый диск наносится специальный фоточувствительный слой, на который затем поступает поток света — он реагирует с молекулами слоя и изменяет свойства кремниевого диска. Этот процесс называется фотолитографией. В отдельных его частях после этого ток начинает проходить иначе — где-то сильнее, где-то слабее.

Затем этот слой покрывается изолирующим веществом (диэлектриком). После на него снова наносится специальный фоточувствительный слой и данный процесс повторяется несколько раз, чтобы на площади появились миллиарды мельчайших транзисторов. Которые потом ещё соединяют между собой, тестируют, разрезают на ядра, соединяют с контактами и упаковывают в корпус процессора.

Благодаря фотолитографии у инженеров есть возможность создания мельчайших нанометровых транзисторов. Однако, как оказывается, техпроцессом в разное время называли разные вещи.

Процессор компьютера – цифровое электронное устройство

Процессор компьютера

Среди цифровых электронных устройств одним из наиболее сложных устройств является процессор компьютера. Это своего рода апофеоз развития цифровой техники.

Внешне он представляет собой кремниевую пластину, смонтированную в корпусе, имеющем множество электрических выводов для подключения к электропитанию и к другим устройствам компьютера.

За то, что процессор делается на кремниевых пластинах, на жаргоне компьютерщиков его иногда называют «камень», так как кремний является весьма прочным материалом.

На эту пластину путем очень точного напыления вещества (точность измеряется ангстремами) в вакууме и при соблюдении идеальной чистоты производства воспроизводят сложнейшую и чрезвычайно миниатюрную по своим размерам электрическую схему, состоящую из десятков и сотен тысяч мельчайших элементов (в основном, транзисторов), соединенных между собой специальным образом.

Производство таких устройств является настолько высокотехнологичным, что его смогли освоить только страны с самой развитой экономикой. Занятно, что при производстве процессоров не измеряют брак, как это принято практически во всех отраслях промышленности и производства, а измеряют так называемый процент выхода годных  изделий, так как совсем немногие заготовки процессоров в конечном итоге становятся работоспособными устройствами.

Качественно произведенные кремниевые пластинки помещают в корпус с выводами и снабжают устройствами охлаждения (радиатор и вентилятор), так как сотни тысяч миниатюрных транзисторов при своей работе выделяют изрядное количество тепла.

Логическая структура процессора компьютера

Если посмотреть на внутреннюю логическую структуру процессора компьютера, то он представляет собой совокупность соединенных между собой устройств:

– арифметико-логическое устройство (АЛУ), в котором, собственно, и производится преобразование информации,

– устройство управления (УУ), которое предназначено для управления арифметико-логическим устройством,

– и регистры (ячейки) памяти, в которых хранятся входные данные, промежуточные данные и результирующие данные.

Команды, предназначенные для управления работой процессора, попадают из оперативной памяти в устройство управления. Это устройство управляет работой арифметико-логического устройства в соответствии с полученными командами.

В свою очередь, АЛУ в соответствии с полученными из УУ командами, осуществляет

  • ввод информации из регистров,
  • обработку информации и
  • запись обработанной информации в регистры.

Регистры процессора могут обмениваться информацией с ячейками оперативной памяти (тоже на основании команд АЛУ). Поэтому в конечном итоге процессор компьютера

  • осуществляет обработку данных, получаемых из оперативной памяти,
  • а обработанные данные также размещает в оперативной памяти.

Что такое процессор компьютера

Вся суть в том, что центральный процессор (его полное название) – как говорят, самое настоящее сердце и одновременно мозг компьютера. Пока он работает, работают и все остальные составляющие системного блока и подключенная к нему периферия. Он отвечает за обработку потоков различных данных, а также регулирует работу частей системы.

Более техническое определение можно найти в Википеди:

В жизни ЦПУ имеет вид небольшой квадратной платы размером со спичечный коробок толщиной в несколько миллиметров, верхняя часть которого как, как правило, прикрыта металлической крышкой (в настольных версиях), а на нижней расположено множество контактов. Собственно, дабы не распинаться, посмотрите следующие фотографии:

Без команды, отданной процессором, не может быть произведена даже такая простая операция, как сложение двух чисел, или запись одного мегабайта информации. Все это требует немедленного обращения к ЦП. Что уж до более сложных задач, таких как запуск игры, или обработка видео.

К словам выше стоит добавить, что процессоры могут выполнять и функции видеокарты. Дело в том, что в современных чипах отведено место для видеоконтроллера, который выполняет все необходимые от нее функции, а как видеопамять использует ОЗУ. Не стоит думать, что встроенные графические ядра способны конкурировать с видеокартами хотя бы среднего класса, это больше вариант для офисных машин, где мощная графика не нужна, но все же потянуть что-то слабое им по зубам. Главным же достоинством интегрированной графики является цена — все же отдельную видеокарту покупать не нужно, а это существенная экономия.

Но сначала разберемся с диодом

Вдыхаем!

Кремний (он же Si – «silicium» в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы «–» касался p-стороны пластины, а «+» – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. «+» от источника к p-стороне, а «–» – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.

Кратко о производстве


0 Смотреть все фото в галерее

Когда фабрика для производства процессоров по новой технологии построена, у нее есть 4 года на то, чтобы окупить вложенные средства (более $5млрд) и принести прибыль. Из несложных секретных расчетов получается, что фабрика должна производить не менее 100 работающих пластин в час. Вкратце процесс изготовления процессора выглядит так: из расплавленного кремния на специальном оборудовании выращивают монокристалл цилиндрической формы. Получившийся слиток охлаждают и режут на «блины», поверхность которых тщательно выравнивают и полируют до зеркального блеска. Затем в «чистых комнатах» полупроводниковых заводов на кремниевых пластинах методами фотолитографии и травления создаются интегральные схемы. После повторной очистки пластин, специалисты лаборатории под микроскопом производят выборочное тестирование процессоров – если все «ОК», то готовые пластины разрезают на отдельные процессоры, которые позже заключают в корпуса.

Чем отличаются процессоры Intel и AMD

Процессоры Intel и AMD отличаются преимущественно архитектурой (электронной схемотехникой). Некоторые лучше справляются с одними задачами, некоторые с другими.

Процессоры Intel Core в целом имеют более высокую производительность на ядро, благодаря чему опережают процессоры AMD Ryzen в большинстве современных игр и больше подходят для сборки мощных игровых компьютеров.

Процессоры AMD Ryzen в свою очередь выигрывают в многопоточных задачах, таких как монтаж видео, в принципе не сильно уступают Intel Core в играх и прекрасно подойдут для универсального компьютера, используемого как для профессиональных задач, так и для игр.

Справедливости ради стоит заметить, что старые недорогие процессоры AMD серии FX-8xxx, имеющие 8 физических ядер, неплохо справляются с монтажом видео и их можно использовать в качестве бюджетного варианта для этих целей. Но они хуже подходят для игр и устанавливаются на материнские платы с устаревшим сокетом AM3+, что сделает проблематичной замену комплектующих в будущем с целью улучшения или ремонта компьютера. Так что лучше приобрести более современный процессор AMD Ryzen и соответствующую материнскую плату на сокете AM4.Если ваш бюджет ограничен, но в будущем вы хотите иметь мощный ПК, то можно для начала приобрести недорогую модель, а через 2-3 года поменять процессор на более мощный.

Что такое процессор (CPU)?

Процессор, что это вообще такое? Зачем он нужен? За какие задачи он отвечает?

Для большинства неопытных и технически неподготовленных пользователей процессором зачастую выступает весь системный блок в сборе. Но это относительно ошибочное суждение, процессор — это нечто, что сокрыто за стенками корпуса и толстым радиатором с вентилятором для его охлаждения.

Процессор или, как его еще называют, центральный процессор (Central Processing Unit) — это электронное устройство (интегральная схема), которое выполняет и обрабатывает машинные инструкции, код программ (машинный язык) и отвечает за все логические операции, которые протекают внутри вашей операционной системы и системного блока.

Без преувеличения, процессор можно назвать мозгом (или сердцем, это кому как больше нравится) любого компьютера, мобильного устройства или другого периферийного устройства. Да-да, слово процессор применимо не только к вашему системному блоку, но и планшету, смарт-холодильнику, игровой приставке, фотоаппарату и другой электронике.

Внешне процессор выглядит как квадратный (или прямоугольный) элемент или плата, в нижней части которой располагается контактная группа для подключения, в вверху находится сам кристалл процессора, который сокрыт под металлической крышкой, чтобы исключить возможность повреждения хрупкого кристалла процессора, а также крышка помогает при отводе тепла с поверхности кристалла на радиатор системы охлаждения.

Кристалл процессора состоит из кремния. Если точнее, полупроводники, из которых состоит процессор, производятся из кремния. На кремневой пластине кристалла в несколько слоёв располагается несколько триллиардов транзисторов (размер которых составляет порядка ~10 нм в зависимости от используемого техпроцесса при производстве), которые отвечают за все логические операции процессора.

На самом деле это только поверхностное описание того, из чего состоит процессор, и оно предназначено, скорее, для визуализации того, что из себя представляет процессор внутри. На самом деле все намного сложнее. К сожалению, просто и доходчиво объяснить все принципы создания и работы процессора не так просто, здесь потребуются знания как элементарной алгебры, так и продвинутой физики и электротехники, да и большинству пользователей это попросту не нужно.

Впоследствии производители процессоров научились располагать на печатной плате, помимо самого кристалла процессора, кристалл видеоядра (видеокарты), что позволило исключить необходимость в отдельной дискретной видеокарте для вывода изображения на монитор.

Подводя итог этого блока статьи и что бы дать простой ответ на такой сложный вопрос «Что такое процессор (CPU)» — процессор это сердце любого современного устройства, которое выполняет все основные операции, будь то простое сложение 2+2, набор текста в Microsoft Word или расчет физической модели в Blender.

На что обратить внимание при выборе процессора

Это были 3 основных характеристики компьютерного процессора – теперь время для всего остального.

TDP процессора

Thermal Design Power – это, в теории, параметр, который указывает количество тепла выделяемое процессором, выраженное в ваттах (Вт). В теории, потому что как Intel, так и AMD используют различную методику оценки этого значения, поэтому значения в графе TDP имеют разный смысл.

AMD определяет максимальную мощность, которую процессор может принять и отдать в виде тепла. Intel определяет TDP как максимальную потребляемую мощность в виде тепла, когда процессор загружен приложениями.

В действительности, этот параметр имеет значение при выборе системы охлаждения, которая должна иметь запас производительности.

Интегрированная графическая система

Если ищите компьютер по низкой цене или предназначенный для мультимедиа, то стоит рассмотреть интегрированную графическую систему. Почти все процессоры Intel имеют встроенный процессор Intel ultra-hd Graphics, а в случае процессоров Ryzen ищите маркировку G.

Технологический процесс

По-другому называется литография. Именно от него, в значительной степени, зависит потребность в энергии и то, как много тепла будет выделять процессор. Современные процессоры Intel производятся в 12-нанометровому техпроцессу. Чипы AMD также изготовлены в литографии 12 нм, однако, обе компании используют немного другие детерминанты, и эти значения де-факто не равны.

Чем выше технологический процесс, тем больше тока будет потреблять процессор и тем больше тепла будет создавать.

Что такое процессор

Процессор — это часть оборудования, которая интерпретирует инструкции, управляющие компьютером. Процессоры называют мозгом компьютера неспроста: без него компьютеры не могут запускать программы.

Процессоры часто называют ЦП. Технически в компьютере есть более одного процессора, например, графический процессор (GPU), но центральный процессор, возможно, является самым важным из них.

Блоки обработки принимают инструкции из оперативной памяти (RAM) компьютера. Когда эти инструкции получены, ЦП декодирует и обрабатывает действие, а затем выдаёт результат.

Intel и AMD — самые известные компании в индустрии процессоров для настольных, портативных и серверных компьютеров. Intel Core и AMD Ryzen — одни из самых популярных процессоров для настольных ПК. Apple, Nvidia и Qualcomm известны своими процессорами для мобильных устройств.

Хранение информации — регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр — минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set — Сброс/Установка);
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим);
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе;
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) — это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Оперативная память бывает статической и динамической — SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической — конденсаторы. SRAM быстрее, а DRAM дешевле.

Виды процессоров

Чтобы понять, что же такое виды процессоров, необходимо обозначить понятие архитектуры. Архитектура – совместимость процессора с различными наборами команд. Каждый процессор при решении задачи и выполнении каких-либо операций руководствуется базовым набором, заложенных в нем архитектурой команд.

  • CISC-платформа (CISC – Complex Instruction Set Computer). Одна из наиболее самых архитектур, которая представлена семейством х86. Такая архитектура подразумевает наличие сложных наборов команд. Благодаря этому платформа х86 является универсальной, так как поддерживает инструкции на любой случай. Кроме того, это еще и высокопроизводительный вариант, в сравнении с другими платформами. Но у такой архитектуры есть и свои минусы: запутанность команд и плохая энергоэффективность;
  • RISC-платформа (RISC – Reduced Instruction Set Computer). Более усовершенствованная версия CISC. Идея данной платформы – использовать только самые необходимые и упрощенные команды, избавиться от сложности и запутанности. RISC-процессоры более просты и оптимизированы, энергоэффективны и меньше, чем их CISC “коллеги”;
  • MISC-платформа (MISC – Minimum Instruction Set Computer) – архитектура с минимальным набором команд, используемых для совершения операций. Идея MISC, как и RISC-платформы также заключается в минимизации числа команд для проектирования более простых и оптимизированных чипов. Фактически, та же самая архитектура, что и RISC, но еще более настроенная на простоту;
  • VLIW-платформа (Very Long Instruction Word) – архитектура с несколькими вычислительными устройствами (АЛУ). Во многом по своей логике является продолжением RISC. Ключевое отличие – акцент на принципе параллельных вычислений, когда сразу несколько операций могут выполняться одновременно.

Рекомендуемые модели процессоров

Для простых задач

Если компьютер будет использоваться для работы с документами и интернета, то вам подойдет недорогой процессор со встроенным видеоядром Pentium G5400/5500/5600 (2 ядра / 4 потока), которые лишь немного отличаются частотой.

Для монтажа видео

Для монтажа видео лучше брать современный многопоточный процессор AMD Ryzen 5/7 (6-8 ядер / 12-16 потоков), который в тандеме с хорошей видеокартой также неплохо справится с играми.

Для среднего игрового компьютера

Для чисто игрового компьютера среднего класса лучше взять Core i3-8100/8300, они имеют честные 4 ядра и хорошо показывают себя в играх с видеокартами среднего класса (GTX 1050/1060/1070).

Для мощного игрового компьютера

Для мощного игрового компьютера лучше взять 6-ядерник Core i5-8400/8500/8600, а для ПК с топовой видеокартой i7-8700 (6 ядер / 12 потоков). Эти процессоры показывает лучшие результаты в играх и способны полностью раскрыть мощные видеокарты (GTX 1080/2080).

В любом случае, чем больше ядер и выше частота процессора, тем лучше. Ориентируйтесь на ваши финансовые возможности.

Если вы хотите понять почему я рекомендую именно эти модели, разобраться во всех нюансах и технических характеристиках процессоров, то читайте статью дальше.

Параметры процессора

  • Количество ядер – отвечают за возможность устройство выполнять одновременно множество операций. В настоящее время даже бюджетные решения, обладают 2 ядрами, что позволить не только сёрфить интернет, работать в офисных программах, но и запускать нетребовательные игры.
  • Частота такта – имеет единицу измерения гигагерц, от неё напрямую зависит скорость загрузки процессора. Чем больше частота, тем быстрее идёт выполнение поставленных задач.
  • Частота шины – отвечает за скорость обмена данными.
  • Разрядность – можно сказать, что это архитектура центрального процессора. Возможны две вариации – 32-bit и 64-bit.

Кэш-память – непосредственно внутренняя память центрального процессора. В ней хранится временная информация и измеряется в мегабайтах.
Сокет – разъём в материнской плате для установки центрально процессора.

Техпроцесс – показывает величину транзисторов и измеряется в нанометрах.
Графическое ядро – в настоящее время процессор может выполнять функцию видеокарты. Но стоит отметить, что для работы с ресурсоёмкими приложениями и тяжёлыми играми, стоит обзавестись внешней видеокартой.
Кулер – выполняет функцию охлаждения, состоит из вентилятора и радиатора.

ВИДЫ ПРОЦЕССОРОВ

В основном многие пользователи ПК знают, что существуют два основных гиганта в области разработки процессоров. Но нас самом деле, известно большое количество процессоров. По их составу существуют одноядерные (слабые) устройства и многоядерные (мощные). Так же процессоры можно разделить на подвиды, которые мы используем для работы в офисе, или игровые.

Итак, какие же две самые масштабные компании создают мозг для компьютеров? Существует две крупные компании по созданию процессоров – это AMD и Intel. Именно эти два лидера завоевали сердца пользователей, так как производят актуальные чипы. Так же важным замечанием будет то, что разница между созданием процессоров, этими двумя компаниями заключается не в количестве ядер, а во внешнем строении, архитектуре.

Иными словами, можно сказать, что принцип работы создания процессоров отличается. У каждой компании свой индивидуальный вид процессора, который имеет другую структуру.

Что делает процессор процессором

Процессор состоит из четырёх компонентов: ALU, FPU, регистров и кэш-памяти.

Арифметико-логический блок (ALU) выполняет все арифметические и логические операции. Он работает с целыми числами. Модуль с плавающей запятой (FPU) управляет числами с плавающей запятой, которые являются числами, включающими десятичную дробь.

Тогда есть реестр. В регистре хранятся инструкции, полученные от других частей компьютера. Затем он сообщает ALU, какие процессы выполнять, и сохраняет результаты этих операций.

Наконец, процессоры включают в себя память L1, L2 и L3. Этот кэш-память позволяет процессору хранить данные локально, не извлекая их из ОЗУ. Включение этого компонента помогает сделать ЦП более быстрым и эффективным.

Процессорные ядра

Некоторые устройства используют одноядерный процессор, в то время как другие могут иметь двухъядерный (или четырехъядерный и т.д.) Процессор. Работа двух процессорных блоков, работающих синхронно, означает, что центральный процессор может одновременно выполнять две команды каждую секунду, что значительно повышает производительность.

Некоторые CPU могут виртуализировать два ядра для каждого доступного физического ядра — метод, известный как Hyper-Threading. Виртуализация означает, что ЦП с четырьмя ядрами может функционировать так, как если бы он имел восемь, а дополнительные виртуальные ядра ЦП называются отдельными потоками. Физические ядра, тем не менее, работают лучше, чем виртуальные.

Если разрешить процессор, некоторые приложения могут использовать многопоточность. Если под потоком понимается единый элемент компьютерного процесса, то использование нескольких потоков в одном ядре ЦП означает, что большее количество инструкций можно понять и обработать одновременно. Некоторые программы могут использовать эту функцию на более чем одном ядре ЦП, что означает, что одновременно может обрабатываться еще больше задач.

Как узнать модель процессора в ОС?

Через «Параметры Windows»

  • Откройте меню «Пуск». Найдите в списке приложений и действий пункт «Параметры» и щёлкните по нему мышкой.

  • Выберите «Система» из списка доступных опций.

  • Модель ЦП и его основные параметры вы увидите в строке «Процессор».

Через «Панель управления» в свойствах системы

  • В «Панель управления» можно попасть через меню «Пуск». Пункт расположен в папке «Служебные — Windows».

  • В появившемся окне выберите пункт «Система».

  • Информация о CPU расположена в блоке с таким же названием.

С помощью инструмента msinfo32

  • Откройте «Пуск» — папка «Служебные — Windows». Активируйте системный инструмент «Выполнить». Аналогичное действие выполняется сочетанием клавиш Win + R.

  • Введите (либо скопируйте и вставьте) msinfo32. Нажмите Enter или ОК.

  • Данные о центральном процессоре расположены на главном экране «Сведений о системе».

В командной строке

  • Через «Пуск» откройте «Служебные — Windows» — «Командная строка» — «Дополнительно» — «Запуск от имени администратора».

  • В консоли введите (либо скопируйте и вставьте) winsat cpu -v, нажмите Enter, запустив тем самым диагностическое средство оценки системы. Модель и некоторые другие данные по CPU расположены в строке Processors.

С помощью PowerShell

  • Введите в поиске PowerShell и запустите инструмент от имени администратора.

  • Выполните команду winsat cpu -v аналогично предыдущей инструкции.

С помощью «Диспетчера устройств»

  • Запустите «Диспетчер устройств». В современных редакциях Windows это можно сделать, например, через дополнительное меню программ и опций, щёлкнув правой кнопкой мыши по иконке в левом нижнем углу экрана.

    Либо выполнив в поиске соответствующий запрос.

  • Чтобы увидеть имя CPU, в появившейся консоли разверните вкладку с процессорами.

В DirectX

  • Запустите инструмент «Выполнить» (как это сделать, было рассмотрено выше). Введите (либо скопируйте и вставьте) запрос dxdiag. Нажмите ОК или Enter.

  • Информация о процессоре в средстве диагностики DirectX содержится во вкладке «Система».

Используем сторонние утилиты

  • Приложение CCleaner используется на огромном числе компьютеров, поэтому, возможно, вам даже не придётся его устанавливать. Модель процессора здесь можно обнаружить на панели рядом с версией утилиты.

  • Программа Speccy не слишком популярна у пользователей, хотя проста и при этом весьма информативна. Данные по центральному процессору содержатся на вкладке «Общая информация».

  • CPU-Z — небольшая утилита, не требующая установки. Сведения о CPU находятся в одноимённой вкладке.

  • Простой, но мощный диагностический инструмент — CPUID HWMonitor также является портативным. Имя и модель процессора расположены в соответствующем блоке.

«Он вам не техпроцесс»

Изначально техпроцессом производители обозначали длину затвора у транзистора. Затвор — это один из элементов транзистора, которым контролируется поток движения электронов. То есть, он решает — будет 0 или 1.

В соответствии с законом Гордона Мура (одного из основателей Intel), количество транзисторов в чипах удваивается в два раза каждые два года. Этот закон был им выведен в 1975 году сугубо на основе личных наблюдений, но они оказались в итоге верны.

За последние годы процессоры прибавили в количестве транзисторов, производительности, но не в размерах

Когда индустрия перешла с техпроцесса 1000 нм на 700 нм, производители обратили внимание, что другие элементы транзистора не так податливы уменьшению, в отличие от затворов. Однако и уменьшать затвор тоже уже было нельзя — потому что в таком случае электроны смогли бы проходить сквозь него и вызывать нестабильную работу чипа. 

В 2012 году с переходом на 22-нанометровый техпроцесс инженеры придумали новый формат проектирование транзисторов — FinFET (от «fin» — рус. «Плавник»). Потому что он действительно стал похож на плавник рыбы.

Принцип заключается в увеличении длины канала, через который проходят электроны. За счёт этого в целом увеличивается площадь поверхности канала, что даёт возможность прохождения через него большему количеству электронов. С увеличением длины производители также получили возможность упаковки транзисторов с большей плотностью на один квадратный миллиметр.

Это, кстати, повысило производительность чипов за последние несколько лет, особенно в мобильных процессорах. Однако, из-за того что транзисторы перестали быть плоскими, став трёхмерными — это усложнило измерения их размера. Простите за тавтологию.

Разные производители, как правило, по-своему производят измерения. Например, Intel берут среднее значение двух размеров от наиболее распространённых ячеек. Кто-то делает иначе, однако в целом всё равно — нанометры, о которых говорят в графе «техпроцесс» являются чем-то усреднённым, но в целом значение практически полностью соответствует размеру одного транзистора

Но ещё, что важно в процессоре — это плотность размещения транзисторов

Работа микропроцессора на примере вычисления факториала


Рассмотрим работу микропроцессора на конкретном примере выполнения им простой программы, которая вычисляет факториал от числа «5». Сначала решим эту задачку «в тетради»: факториал от 5 = 5! = 5 * 4 * 3 * 2 * 1 = 120

На языке программирования C этот фрагмент кода, выполняющего данное вычисление, будет выглядеть следующим образом:

a=1;f=1;while (a

Когда эта программа завершит свою работу, переменная f будет содержать значение факториала от пяти.

Компилятор C транслирует (то есть переводит) этот код в набор инструкций языка ассемблера. В рассматриваемом нами процессоре оперативная память начинается с адреса 128, а постоянная память (которая содержит язык ассемблера) начинается с адреса 0. Следовательно, на языке данного процессора эта программа будет выглядеть так:

// Предположим, что a по адресу 128// Предположим, что F по адресу 1290 CONB 1 // a=1;1 SAVEB 1282 CONB 1 // f=1;3 SAVEB 1294 LOADA 128 // if a > 5 the jump to 175 CONB 56 COM7 JG 178 LOADA 129 // f=f*a;9 LOADB 12810 MUL11 SAVEC 12912 LOADA 128 // a=a+1;13 CONB 114 ADD15 SAVEC 12816 JUMP 4 // loop back to if17 STOP

Теперь возникает следующий вопрос: а как же все эти команды выглядят в постоянной памяти? Каждая из этих инструкций должна быть представлена в виде двоичного числа. Чтобы упростить понимание материала, предположим, что каждая из команд языка ассемблера рассматриваемого нами процессора имеет уникальный номер:

  • LOADA — 1
  • LOADB — 2
  • CONB — 3
  • SAVEB — 4
  • SAVEC mem — 5
  • ADD — 6
  • SUB — 7
  • MUL — 8
  • DIV — 9
  • COM — 10
  • JUMP addr — 11
  • JEQ addr — 12
  • JNEQ addr — 13
  • JG addr — 14
  • JGE addr — 15
  • JL addr — 16
  • JLE addr — 17
  • STOP — 18

Будем считать эти порядковые номера кодами машинных команд (opcodes). Их еще называют кодами операций. При таком допущении, наша небольшая программа в постоянной памяти будет представлена в таком виде:

// Предположим, что a по адресу 128// Предположим, что F по адресу 129Addr машинная команда/значение0 3 // CONB 11 12 4 // SAVEB 1283 1284 3 // CONB 15 16 4 // SAVEB 1297 1298 1 // LOADA 1289 12810 3 // CONB 511 512 10 // COM13 14 // JG 1714 3115 1 // LOADA 12916 12917 2 // LOADB 12818 12819 8 // MUL20 5 // SAVEC 12921 12922 1 // LOADA 12823 12824 3 // CONB 125 126 6 // ADD27 5 // SAVEC 12828 12829 11 // JUMP 430 831 18 // STOP

Как вы заметили, семь строчек кода на языке C были преобразованы в 18 строчек на языке ассемблера. Они заняли в ПЗУ 32 байта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector