Из чего состоит центральный процессор?

Принцип действия

Назначение микропроцессора заключается в считывании каждой команды из памяти, ее декодировании и выполнении.

ЦПУ обрабатывает данные согласно инструкциям программы в форме логических и арифметических операций. Информация извлекается из памяти или поступает из устройства ввода, и результат обработки сохраняется в памяти или доставляется на соответствующее устройство вывода так, как это указано в командах. Вот что такое микропроцессоры. Для выполнения всех указанных функций у них имеются различные функциональные блоки.

Такая внутренняя или организационная структура ЦПУ, определяющая его работу, называется его архитектурой.

Типичная схема устройства микропроцессора представлена ниже.

Части ПК

Персональный компьютер среднестатистического пользователя состоит из таких составляющих:

Системный блок

В народе “системник”: в этой “коробке” из металла и пластика установлены комплектующие, какие именно, мы обсудим ниже. Блоки бывают разных типов: microATX, MiniATX, ATX и прочие, главное их отличие в размерах и внутреннем устройстве. Например, “микро” и “мини” хорошо подходят для офисных и домашних ПК, а просторные ATX – идеальное решение для игровых станций, с большими видеокартами и охлаждением.

Монитор

Тут все просто, при помощи дисплея мы получаем картинку. Без монитора компьютер включится, но мы не сможем на нем работать, т.к. ничего не увидим. В наше время практически везде используются “плоские” дисплеи. Наиболее популярными диагоналями для офисных задач служат: 19, 22 дюйма; геймеры же предпочитают размеры побольше: 24, 27 дюймов. Такими тонкими мониторы были не всегда, еще 10-12 лет назад были распространены ЭЛТ-дисплеи, массивные “квадратные” устройства диагональю 15, 17, реже 19 дюймов.

Кроме того, мониторы отличаются по типам матрицы, самыми распространенными являются IPS и TN. IPS матрица славится прекрасной передачей цвета, хорошей контрастностью и широкими углами обзора. TN матрица более старая технология, но хороша для игр, т.к. имеет меньшее время отклика.

Большое значение в мониторе имеет разрешение, самым распространенным является 1920х1080 точек  (1080р), менее популярным 2048×1152 точек (2К), разрешение 4096×2304 точек (4К) пока только набирает популярность, мониторы с таким разрешением стоят недешево.

https://youtube.com/watch?v=zjTbCMWRACA

Устройства ввода

Клавиатура и мышь, главные устройства ввода для пользователя. Клавиатур существует большое количество моделей, почти все они имеют стандартную раскладку и отличаются размером и формой. Для геймеров есть механические клавиатуры, которые отличаются точностью регистрации нажатий.

Стандартные мышки имеют 2 кнопки и ролик. Игровые разновидности оснащены 5 и более кнопками, они имеют высокую чувствительность и хороши в быстрых и стремительных играх, как правильно, игровые мышки стоят недешево. Клавиатуры, как и мыши, могут быть проводными и беспроводными. Проводные устройства чаще всего подсоединяются по USB, ранее для них существовал отдельный PS/2 выход.

Колонки

При помощи колонок воспроизводятся звук, есть большое количество разнообразных устройств, от самых дешевых, но с плохим качеством звука, и до профессиональных, с кристальным качеством, но очень дорогих. Обычному пользователю, если он не профессионально работает со звуком, хватает недорогих моделей. Также колонки отличаются по разновидностям:

  • системы 2.0 состоят из двух колонок, это наиболее популярный выбор среди простых пользователей;
  • 2.1 система имеет 2 колонки и 1 сабвуфер (воспроизводит низкие частоты);
  • 5.1 система, как вы, наверное, уже догадались, имеет 5 колонок и 1 сабвуфер, такие системы хороши для просмотра кино и прослушивания многоканальной музыки;
  • менее популярными являются системы 7.1 (7 колонок и 1 сабвуфер).

Другие устройства, подсоединяемые к ПК

  • принтеры и сканеры: принтеры служат для печати документов и фотографий, существуют лазерные и струйные модели. Сканеры переводят изображения в цифровую версию.
  • веб-камера: служит для видео-общения по интернету, зачастую в Skype;
  • флешки: переносные накопители информации, с разнообразным объемом: 4, 8, 16, 32, 64 и более гигабайт;
  • наушники: устройство для воспроизведения звука, существует много разновидностей: накладные, капельки, открытые, закрытые и т.д. Наушники могут быть как недорогими, для неискушенного пользователя, так и стоящими весьма внушительную сумму, но обладающими великолепным объемным звуком;
  • микрофон: устройство для записи звука, а также для общения. Существуют простенькие недорогие модели для разговоров по “Скайп”, а также дорогостоящие микрофоны для профессиональной записи звука;
  • источник бесперебойного питания: эти устройства служат для защиты от внезапного отключения энергии;
  • игровые манипуляторы: устройства ввода для игр: руль и педали для гонок; контроллер в виде штурвала для авиасимуляторов; геймпад для разных игровых жанров.

Декодирование


Разговор о декодировании придется начать c рассмотрения филологических вопросов. Увы, далеко не все компьютерные термины имеют однозначные соответствия в русском языке. Перевод терминологии зачастую шел стихийно, а поэтому один и тот же английский термин может переводиться на русский несколькими вариантами. Так и случилось с важнейшей составляющей микропроцессорной логики «instruction decoder». Компьютерные специалисты называют его и дешифратором команд и декодером инструкций. Ни одно из этих вариантов названия невозможно назвать ни более, ни менее «правильным», чем другое. Дешифратор команд нужен для того, чтобы перевести каждый машинный код в набор сигналов, приводящих в действие различные компоненты микропроцессора. Если упростить суть его действий, то можно сказать, что именно он согласует «софт» и «железо».

Рассмотрим работу дешифратора команд на примере инструкции ADD, выполняющей действие сложения:

  • В течение первого цикла тактовой частоты процессора происходит загрузка команды. На этом этапе дешифратору команд необходимо: активировать буфер сортировки для счетчика команд; активировать канал чтения (RD); активировать защелку буфера сортировки на пропуск входных данных в регистр команд
  • В течение второго цикла тактовой частоты процессора команда ADD декодируется. На этом этапе арифметико-логическое устройство выполняет сложение и передает значение в регистр C
  • В течение третьего цикла тактовой частоты процессора счетчик команд увеличивает свое значение на единицу (теоретически, это действие пересекается с происходившим во время второго цикла)

Каждая команда может быть представлена в виде набора последовательно выполняемых операций, которые в определенном порядке манипулируют компонентами микропроцессора. То есть программные инструкции ведут ко вполне физическим изменениям: например, изменению положения защелки. Некоторые инструкции могут потребовать на свое выполнение двух или трех тактовых циклов процессора. Другим может потребоваться даже пять или шесть циклов.

Микропроцессоры

По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.

Из чего состоит современный микропроцессор?

Структура процессора сегодня представлена следующими основными элементами:

  • Собственно, ядро процессора. Наиболее важная деталь, сердце устройства, которая называется также кристаллом или камнем современного микропроцессора. От характеристик и новизны ядра напрямую зависит разгон и оперативность работы микропроцессора.
  • Кэш-память является небольшим, но очень быстрым накопителем информации, расположенным прямо внутри процессора. Используется микропроцессором в целях значительного уменьшения времени доступа к основной памяти компьютера.
  • Специальный сопроцессор, благодаря которому и производятся сложные операции. Такой сопроцессор в значительной мере расширяет функциональные возможности любого современного микропроцессора и является его неотъемлемой составляющей. Встречаются ситуации, когда сопроцессор является отдельной микросхемой, однако, в большинстве случаев, он встроен непосредственно в компьютерный микропроцессор.

Путем буквального разбора компьютерного процессора мы сможем увидеть следующие элементы строения, представленные на схеме:

Верхняя металлическая крышка используется не только для защиты «камня» от механических повреждений, но также для отвода тепла.
Непосредственно, кристалл или камень является самой важной и дорогостоящей деталью любого компьютерного микропроцессора.Чем сложнее и совершеннее такой камень, тем быстродействующей является работа «мозга» любого компьютера.
Специальная подложка с контактами на обратной стороне завершает конструкцию микропроцессора, как представлено на картинке. Именно благодаря такой конструкции тыльной стороны и происходит внешнее взаимодействие с центральным «камнем», непосредственно оказывать влияние на сам кристалл невозможно

Скрепление всего строения осуществляется с помощью специального клея-герметика.

Машинный цикл и его схема

Данный процесс, как правило, состоит из следующих шагов:

  • Выбирается команда из ячейки, адрес которой сохранен в регистре-счетчике. Его содержимое при этом увеличивается на значение длины этой команды.
  • Далее она отправляется в устройство управления, попадая в его регистр команд.
  • Адресное поле, принадлежащее команде, расшифровывается устройством управления.
  • Последнее дает сигнал, и данные считываются из оперативной памяти, попадая уже в арифметико-логическое устройство.
  • Устройством управления расшифровывается код выполняемой операции и в арифметико-логическое устройство подается сигнал о выполнении этого действия над данными, которые в таком случае называются операндами.
  • Результат выполнения операции может сохраниться в самом центральном процессоре или же передается в память, в случае, когда имеется адрес, по которому должен находиться результат.
  • Все вышеперечисленные шаги выполняются до тех пор, пока не будет дан стоповый сигнал.

Подробнее о процессорах

Ни тактовая частота, ни просто количество ядер ЦП не являются единственным фактором, определяющим, является ли один ЦП «лучше» другого. Часто это зависит от типа программного обеспечения, которое работает на компьютере, иными словами, от приложений, которые будут использовать процессор.

Один процессор может иметь низкую тактовую частоту, но является четырехъядерным процессором, тогда как другой имеет высокую тактовую частоту, но является двухъядерным процессором. Решение, какой ЦП превзойдет другой, опять же, полностью зависит от того, для чего ЦП используется.

Например, требовательная к ЦП программа редактирования видео, которая лучше всего работает с несколькими ядрами ЦП, будет работать лучше на многоядерном процессоре с низкой тактовой частотой, чем на одноядерном ЦП с высокой тактовой частотой. Не все программное обеспечение, игры и т.д., могут даже использовать больше, чем одно или два ядра, что делает любые более доступные ядра ЦП довольно бесполезными.

Другим компонентом CPU является кеш. Кэш процессора — это временное хранилище для часто используемых данных. Вместо вызова оперативной памяти для этих элементов ЦП определяет, какие данные вы, похоже, продолжаете использовать, предполагает, что вы захотите продолжать их использовать, и сохраняет их в кеше. Кэш быстрее, чем тот что используется в ОЗУ, потому что это физическая часть процессора; Чем больше кеш, тем больше места для хранения такой информации.

Может ли ваш компьютер работать под управлением 32-разрядной или 64-разрядной операционной системы, зависит от размера блоков данных, которые может обрабатывать процессор. К 64-разрядному процессору можно получить доступ к большему объему памяти одновременно, чем к 32-разрядному CPU, поэтому 64-разрядные операционные системы и приложения не могут работать на 32-разрядном процессоре.

Вы можете просмотреть сведения о процессоре компьютера, а также другую информацию об оборудовании с помощью большинства бесплатных инструментов для получения информации о системе.Помимо стандартных процессоров, доступных в коммерческих компьютерах, квантовые процессоры разрабатываются для квантовых компьютеров с использованием науки, лежащей в основе квантовой механики.

Каждая материнская плата поддерживает только определенный диапазон типов процессоров, поэтому всегда обращайтесь к производителю материнской платы, прежде чем делать покупку. Кстати, процессоры не всегда идеальны.

Команды и иерархия памяти

Чтобы лучше понять принцип работы команд, связанных с памятью, стоит обратить внимание на концепцию иерархии памяти — связь между кэшем, оперативной памятью и главным запоминающим устройством. Когда процессор работает с командой памяти, данных о которой у него еще нет в регистре, он будет продвигаться по иерархии памяти, пока не найдет нужную информацию

Большинство современных процессоров имеют три уровня кэша: первый, второй и третий. Сначала процессор проверит наличие необходимых команд в кэше первого уровня — самом маленьком и быстром из всех. Зачастую этот кэш разделен на две части: первая отведена под данные, а вторая — под команды. Помните, команды извлекаются процессором из памяти так же, как и любые другие данные. 

Типичный кэш первого уровня может состоять из нескольких сотен килобайт. Если процессор не найдет в нем то, что нужно, то перейдет к проверке кэша второго уровня (размером в несколько мегабайт), а затем — третьего (уже занимающего десятки мегабайт). В случае, если необходимых данных не будет и в кэше третьего уровня, то поиск будет производиться в оперативной памяти, а затем в накопителях. С каждым подобным «шагом», увеличивается не только объем доступных данных, но и задержка.  

После того, как процессор нашел необходимые данные, он отправляет их вверх по иерархии памяти для сокращения время поиска, на случай, если они понадобятся в дальнейшем. Для справки: процессор может считывать данные во внутреннем регистре всего за один-два цикла, в кэше первого уровня понадобится немногим больше, в кэше второго уровня уже около десяти, а третьего — несколько десятков циклов. Если приходится задействовать память или накопители, то процессору может понадобятся десятки тысяч, а то и миллионы циклов. В зависимости от системы, у каждого ядра процессора может быть собственный кэш первого уровня, общий с другим ядром кэш второго уровня и кэш третьего уровня у группы из четырех или более ядер. Более подробно речь о многоядерных процессорах пойдет позже.

Работа процессора

Работает процессор под управлением программы, находящейся в оперативной памяти.

(Работа процессора сложнее, чем это изображено на схеме выше. Например, данные и команды попадают в кэш не сразу из оперативной памяти, а через блок предварительной выборки, который не изображен на схеме. Также не изображен декодирующий блок, осуществляющий преобразование данных и команд в двоичную форму, только после чего с ними может работать процессор.)

Блок управления помимо прочего отвечает за вызов очередной команды и определение ее типа.

Арифметико-логическое устройство, получив данные и команду, выполняет указанную операцию и записывает результат в один из свободных регистров.

Текущая команда находится в специально для нее отведенном регистре команд. В процессе работы с текущей командой увеличивается значение так называемого счетчика команд, который теперь указывает на следующую команду (если, конечно, не было команды перехода или останова).

Часто команду представляют как структуру, состоящую из записи операции (которую требуется выполнить) и адресов ячеек исходных данных и результата. По адресам указанным в команде берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала оказывается в регистре, а уж потом перемещается по своему адресу, указанному в команде.

Как работают ядра процессора

В старые времена вычислительной техники компьютерный процессор имел бы одно ядро. Это означает, что он мог одновременно выполнять только один набор инструкций. Аппаратные инженеры раздвинули этот предел, и сегодня многоядерные процессоры стали стандартом. Многоядерные процессоры имеют несколько ядер, поэтому они могут выполнять разные инструкции одновременно.

Большинство компьютеров сегодня имеют от двух до четырёх ядер. Вы часто слышите, что эти настройки называются «двухъядерными» и «четырехъядерными» соответственно. Некоторые процессоры имеют до 12 ядер, в зависимости от их назначения. Чем больше ядер у ЦП, тем больше инструкций может интерпретировать процессор.

Многоядерные процессоры — это просто два или более процессора на одном кристалле. Четырехъядерный процессор — это четыре процессора, всё на одном кристалле. Затем они связываются, чтобы они могли работать вместе.

Техпроцесс

Итак, техпроцесс. Современные процессоры состоят из огромного числа транзисторов, размещенных на маленьком кремниевом кристалле. Чем больше транзисторов — тем мощнее в итоге получается процессор. Высокой плотности монтажа удается достичь за счет многослойной структуры готового кристалла процессора. Процесс очень напоминает фотолитографию (когда проявляют фотопленку, свет проходит через негатив и создает изображение на фотобумаге).

Современные технологии позволяют создавать транзисторы размером всего 22 нанометра и даже меньше! Для сравнения, толщина человеческого волоса около 50000 нм.  Со временем техпроцесс будет только уменьшаться, что позволит создавать еще более мощные ЦП, такая тенденция прослеживается уже сейчас. Чем меньше техпроцесс, тем больше транзисторов можно разместить на одном кристалле, и тем мощнее в итоге будет процессор, вот так.

Два основных компонента процессора

Устройство управления

Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент — арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.

Существует два типа реализации УУ:

  • УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением — устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
  • УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.

УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.

Арифметико-логическое устройство

Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.

Большинство логических элементов имеют два входа и один выход.

Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S — выходом, C — переносом (в старший разряд).

Схема арифметического полусумматора

Шины

Микрокомпьютер оперирует двоичным кодом. Бинарная информация представлена двоичными цифрами, называемыми битами. Группа битов образует машинное слово (их количество зависит от конкретной реализации). Обычные размеры слова равны 4, 8, 12, 16, 32 и 64 бит. Байт и полубайт представляют собой набор из 8 и 4 бит соответственно.

Шины соединяют различные блоки устройства и позволяют им обмениваться машинными словами. Они выполнены в виде отдельного провода для каждого бита, что позволяет обмениваться всеми разрядами машинного слова одновременно. Обработка информации в ЦПУ также происходит параллельно. Таким образом, шины могут рассматриваться как магистрали передачи данных. Их ширина определяется количеством составляющих их сигнальных линий. По адресной шине ЦПУ передает адрес устройства ввода-вывода или ячейки памяти, к которой он хочет получить доступ. Этот адрес принимается всеми устройствами, подключенными к процессору. Но реагирует на него только то, которому был адресован запрос. Шина данных служит для отправки и приема информации из устройств ввода-вывода и памяти, в т. ч. команд. Очевидно, что она является двунаправленной, а адресная – однонаправленной. Шина управления используется для передачи и приема сигналов управления между микропроцессором и различными элементами системы.

Как устроен процессор компьютера

March 20, 2016

Сегодня у каждого из нас имеется собственный персональный компьютер, однако не всегда мы думаем о том, насколько сложная и многогранная эта вещь. Любой из системных блоков содержит в своем составе своего рода центр всех выполняемых операций и текущих процессов – это микропроцессор. Из чего состоит этот незаменимый элемент каждого компьютера и зачем он нужен – тема сегодняшней статьи. Вероятно, многих читателей удивит тот факт, что сердце любого компьютера состоит из самых обычных камней, а точнее из горных пород.

Это на самом деле так. В составе каждого микропроцессора содержится кремний, а это материал, из которого в большей степени состоит песок и даже гранитные скалы. Примечательно, что первый микропроцессор для персонального компьютера был разработан практически пол века назад. Автором этого проекта стал Маршиан Эдвард Хофф в 1970-ом году, а также команда его подопечных исследователей из компании Intel. Этот процессор был достаточно слабым, поскольку работал на частоте в 750 кГц. Если сравнивать этот микропроцессор с современными аналогами, то он существенно проиграет по своим техническим характеристикам. Дело в том, что современные микропроцессоры в тысячи раз мощнее и перед тем как присмотреть новый процессор для своего компьютера, неплохо было бы предварительно ознакомиться с тем, какие задачи вообще решает этот центральный элемент любого ПК.

Бытует ошибочное мнение, будто современные процессоры могут самостоятельно думать и на самом деле это мнение ошибочно и в нем нет ни доли правды. Каждый современный процессор состоит из огромного количества транзисторов – это своего рода переключатели. Они позволяют осуществлять выполнение только одной функции – пропускать принимаемый сигнал дальше или же остановить его. Каким будет выбор зависит исключительно от напряжение приходного импульса.

Из чего состоит микропроцессор?

Если более подробно посмотреть на любой микропроцессор, то не составит труда заметить, что в его составе имеются многочисленные регистры, являющиеся информационными обрабатывающими ячейками. Чтобы связать «камень» процессора с остальными составляющими компьютера используется высокоскоростная шина. Именно по ней каждую секунду пролетают небольшие электромагнитные сигналы. Именно к этому и сводится принцип действия любого микропроцессора компьютера или же ноутбука.

Как устроен микропроцессор?

У любого современного микропроцессора имеется всего три базовых составляющих:

  • Ядро – именно в этом сегмента осуществляется деление информации на нули и единицы;
  • Кэш-память – это накопитель информации небольшого объема внутри микропроцессора;
  • Сопроцессор – уникальный в своем роде мозговой центр любого современного компьютера, где осуществляются самые сложные операции. В этой же составляющей микропроцессора происходит работа с мультимедийными файлами.

Одной из самых главных показателей любого микропроцессора является его тактовая частота. Именно этот параметр указывает на то, сколько тактов может осуществить процессор на протяжении одной секунды. Что касательно мощности микропроцессора, то она во многом зависит от всех параметров, о которых говорилось выше.

Примечательно, что сравнительно недавно запуском ракет и работой спутников занимались микропроцессоры, мощность которых была в сотни раз меньшей чем у нынешних аналогов. Сегодня размер одного транзистора равен всего 22нм, а прослойка транзисторов – 1нм. Напомним, что 1 нм – это толщина 5-ти атомов. Надеемся, этот материал был Вам полезен и дал возможность понять, как на самом деле устроены микропроцессоры современных компьютеров. Как видите, ученым удалось добиться немалого успеха, о чем наглядно свидетельствуют современные компьютеры.

Выбираем

Условно процессоры можно разделить на 4 класса: офисные, мультимедийные, игровые и с максимальной производительностью. К первому из них можно отнести системы начального уровня (например, Athlon 5350 с 4 ядрами на борту). Такие системы отлично работают с офисными приложениями, позволяют просматривать фильмы и слушать музыку. Мультимедийные ПК более производительные. Они позволяют, кроме всего ранее перечисленного, запускать игры на средних и минимальных настройках. В качестве примера можно привести A-6600 от AMD. В свою очередь, следующий класс ПК ориентирован сугубо для запуска игрушек, в том числе и с максимальными настройками. Тут, кроме производительного процессора, должна быть также установлена и дискретная (внешняя) видеокарта. Тут Core i5 альтернативы нет на сегодняшний день. А вот сердцем компьютера с бескомпромиссной производительностью обязательно должен быть Core i7. Он без проблем справится с любой задачей не только на сегодняшний день, а и в ближайшие 2-3 года. Опять-таки обязательно наличие внешнего более производительного графического адаптера.

Часто возникает на практике такая ситуация, когда Что делать в таком случае? К этому приводит работа одного или нескольких служб и приложений, которые «съедают» ресурсы процессора. Рекомендации в этом случае следующие:

  • Нажимаем «Ctrl», «Alt» и «Delete». В открывшемся перечне находим пункт «Диспетчер задач».
  • Далее переходим на вкладку «Процессы». Смотрим те из них, которые больше всего загружают процессор. Если такие есть, то выделяем их и нажимаем внизу кнопку «Остановить».
  • Потом переходим на «Приложения» и повторяем ранее изложенную процедуру.
  • Затем пробуем повторно запустить приложение. При повторении ситуации, когда процессор полностью загружен, перезагружаем компьютер.
  • Если это не решает проблему, то нужно переустановить программу.
  • В крайнем случае, если ничего не помогает, то нужно проверить системные требования приложения. Может быть, ваш процессор не подходит для этой программы.

Многое зависит также и от операционной системы. Сейчас наиболее распространенная — Windows 7. Загрузка ЦП будет меньше на Виндовс 8

Поэтому при выборе операционной системы лучше обращать внимание на нее

Периферийные устройства

Монитор – экран компьютера. Отображает результат вычислений процессора и видеокарты в визуальном виде

При выборе нужно обращать внимание на размер дисплея, частоту и время отклика

С каждым годом мониторы модернизируются. В 2000-ых были ЭЛТ мониторы.

Им на смену пришли плоские, которые также с каждым годом обновляются.

На сегодняшний день существуют 4К мониторы с изогнутым дисплеем и VA матрицей. Постепенно им на смену приходят мониторы с квантовой матрицей.

Клавиатура – устройство ввода данных. С помощью клавиатуры мы печатаем тексты и производим всевозможные действия на компьютере. Может подключаться к компьютеру с помощью проводного и беспроводного интерфейса.

Клавиатуры бывают стандартные и геймерские. На последних присутствуют дополнительные кнопки и выполнен удобный для игр дизайн.

Компьютерная мышь. С помощью нее мы перемещаем курсор по экрану, запускаем приложения и работаем в них. Может подключаться по проводному и беспроводному интерфейсу.

Мышки бывают как стандартные, так и дизайнерские. Последние выполнены в более удобной форме и могут иметь дополнительные боковые кнопки.

Звуковые колонки. В них поступает звук со звуковой карты. Чаще всего встречаются обычные офисные колонки.

Но бывают и навороченные – с бас бочкой.

Для более объемного звука потребуется дополнительная звуковая карта.

Микрофон. Подключается к звуковой карте и нужен для голосового общения. При помощи него общаются по интернету в Скайпе, Одноклассниках, Вайбере и других сервисах.

Веб-камера. Позволяет совершать видео звонки по интернету. Подключается через интерфейс USB.

USB накопители. К ним относятся флешки и картридеры.

Флешки – это портативные устройства, на которых хранится информация. Бывают разных объемов: от 4 Гб и выше.

Картридеры – устройства, которые считывают информацию с SD-карт. Такие карты используются в телефонах и фотоаппаратах.

Цикл выполнения команд — Выборка

Первое, что должен сделать процессор — определить, какие команды необходимо выполнить следующими, а затем переместить их из памяти в блок управления. Команды создаются компилятором и зависят от архитектуры набора (ISA). Наиболее распространенные типы базовых инструкций (например, «загрузка», «хранение», «сложение», «вычитание» и др.) общие для всех ISA, но существует множество дополнительных, специальных типов команд, уникальных для конкретной архитектуры набора. Блок управления знает, какие сигналы и куда нужно направить для выполнения определенного типа команды.

К примеру, при запуске .exe файла в Windows, код этой программы отправляется в память и процессор получает адрес, с которого начинается первая команда. Процессор всегда поддерживает внутренний реестр, отслеживающий откуда должна будет выполняться следующая команда. Этот реестр называется счетчиком команд. 

После того, как процессор определил точку, с которой нужно начинать цикл, происходит перемещение команды из памяти в вышеупомянутый реестр — этот процесс называется выборкой команды. По-хорошему, команда, скорее всего, уже находится в кэше процессора, но этот вопрос будет рассмотрен чуть позже. 

Системная шина

Тот, кто уже узнал, что такое процессор компьютера, наверняка, заинтересуется и тем, посредством чего он осуществляет управление остальными компонентами ПК. Очевидно, что такая задача под силу только сложной системе. Она называется процессорной шиной и представляет собой совокупность сигнальных линий, объединенных по назначению. Каждая из них имеет определенный протокол передачи данных и электрическую характеристику. К самой процессорной, или, как ее еще называют, системной шине подключается только CPU, а все другие устройства — через контроллеры материнской платы. В то же время существуют варианты, когда память подключается непосредственно в процессор, благодаря чему обеспечивается его большая эффективность. Тут уместно задать вопрос о том, что такое разрядность процессора, так как, например, выражение “разрядности процессора х 64” означает, что данное устройство снабжено 64-разрядной шиной данных, и такое количество бит оно обрабатывает за единичный такт.

Команды (инструкции)

Команды — это фактические действия, которые компьютер должен выполнять. Они бывают нескольких типов:

  • Арифметические: сложение, вычитание, умножение и т. д.
  • Логические: И (логическое умножение/конъюнкция), ИЛИ (логическое суммирование/дизъюнкция), отрицание и т. д.
  • Информационные: , , , и .
  • Команды перехода: , , и .
  • Команда останова: .

Прим. перев. На самом деле все арифметические операции в АЛУ могут быть созданы на основе всего двух: сложение и сдвиг. Однако чем больше базовых операций поддерживает АЛУ, тем оно быстрее.

Инструкции предоставляются компьютеру на языке ассемблера или генерируются компилятором высокоуровневых языков.

В процессоре инструкции реализуются на аппаратном уровне. За один такт одноядерный процессор может выполнить одну элементарную (базовую) инструкцию.

Группу инструкций принято называть набором команд (англ. instruction set).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector