Теория относительности эйнштейна: коротко и просто о сложном

Сложение скоростей: попытка вернутся в прошлое

Помните бандита Клио? Несолоно хлебавши он прилетел на Землю, некоторое время скрывался, но его выследил великий детектив майор Прошкин. Выследил и гонится за ним. Спасаясь от преследования, Клио бросается в метро. Возле эскалатора стоит контролер. Жетона у пирата нет, и он, проскользнув мимо контролера, бежит по эскалатору вниз. Спрашивается, какова скорость Клио относительно контролера? По школьным правилам эта скорость равна сумме двух скоростей: эскалатора относительно контролера и Клио относительно эскалатора.

Допустим, вопреки правдоподобию, что скорость эскалатора почти равна световой и Клио бежит по нему столь же быстро. Но если так, то, выходит, можно, складывая скорости, обогнать свет? И, следовательно, нарушить третий постулат? И этим способом опрокинуть принцип причинности, то есть переместиться от следствий к причинам, двинуться в прошлое, повернуть время вспять?

И вот, удирая от погони, Клио мечтает: а вдруг, сбежав на перрон, он окажется в далеком прошлом! И начнет жить сначала… Но радужные надежды обрываются строгим возгласом:
— Гражданин Клио, вы арестованы. Пройдемте!..— На бандита глядят усталые глаза майора Прошкина и нацелено дуло пистолета.

Бегство в заветное прошлое не удалось. Щелкают наручники, и пойманный пират, понурившись, шагает в ближайшее отделение полиции.

Дело в том, что школьное правило сложения скоростей в стране сверхбыстрого не действует. Ведь скорость есть расстояние, деленное на длительность, а и расстояния и длительности относительны. Для контролера метры эскалатора короче, чем его собственные, а секунды — длиннее. Знаменатель больше, числитель меньше — дробь уменьшается. Поэтому контролер, рассчитывая суммарную скорость Клио относительно себя, не может просто сложить скорости эскалатора и Клио. Суммарная скорость Клио относительно контролера будет меньше, чем требует школьное правило. Как раз настолько, чтобы не нарушался третий постулат.

Вы вправе строить «многоэтажные» эскалаторы, пускать новые по уже идущим. В предельном случае — когда скорости каждого эскалатора приблизятся к световой и Клио понесется по последнему почти со скоростью света,— все равно суммарная скорость не достигнет точной скорости света.

Так что путь в прошлое по-прежнему закрыт, предельность скорости света подтверждена еще раз. И отчетливо видно, сколь труден разгон на высоких скоростях. Чем ближе к скорости света, чем он труднее. И у самой скорости света становится вообще невозможным.

Постулаты Эйнштейна: сумасшедшая природа и эксперименты на звездолете

В начале XX века великий физик Альберт Эйнштейн сказал своим коллегам: «Равномерное прямолинейное движение невозможно отличить от покоя, хотя скорость света не зависит от движения источника».

Эта фраза для тогдашних ученых несла в себе примерно такой же смысл, как для меня приказ, описанный в прологе. Потому что вторая ее часть резко противоречила первой. Поехать в Киев немудрено. Остаться в Одессе еще проще. Сделать то и другое сразу — абсурд.

Согласиться, что скорость света не зависит от движения лампы, очень просто. В XIX веке выяснилась волновая природа света, а скорость волн никак не зависит от скорости их источника. Например, звуковые волны невозможно ускорить, послав их «с разбега».

С другой стороны, легко признать, что строго равномерные прямолинейные движения невозможно отличить от покоя. Каждый на собственном опыте почувствовал это в каюте плавно идущего парохода. Такие движения фиксируются лишь по отношению друг к другу, то есть относительны. Еще 400 лет тому назад об этом писал прозорливый Галилей.

Как видите, по отдельности обе части эйнштейновского заявления ничуть не страшны. Совмещение же их представлялось безумным потому, что первой, казалось, нацело опровергалась вторая. Как необходимостью пребывания в Одессе нацело отвергается командировка в Киев.

Пусть я сижу в ракете, находящейся где-то в далеком космосе. И не знаю, движусь ли я. Но хочу узнать.

Будь вокруг неподвижный воздух, я воспользовался бы независимостью скорости звука от скорости звукового источника: дал бы с ракеты звуковой сигнал и проверил, догоняю я его волны или нет. В воздухе такая операция вполне доступна. Современные самолеты даже обгоняют рев своих двигателей: заметив внезапно наступившую относительную тишину, летчик понимает, что шум остался позади и самолет мчится в воздухе быстрее звука. Но воздуха за окном ракеты нет. Звуки молчат.

Зато у меня есть прожектор. И так как скорость света, подобно скорости звука, не зависит от скорости источника, я решаю с помощью света обнаружить собственное движение. Вот я зажег прожектор, от него побежал световой сигнал. Стоит мне, казалось бы, узнать, нагоняю ли я его или отстаю от него в своей ракете, и дело сделано: если догоняю или отстаю, значит, движусь, если нет — стою на месте. А если, включив прожектор, я не вижу его света, значит, моя ракета обогнала свет — подобно самолету, обогнавшему звук. Возможно такое?

Тут-то и приходится дать парадоксально-отрицательный ответ: нет, невозможно. Хоть скорость света, действительно, не зависит от движения фонаря.

В 1881 году американец Майкельсон осуществил именно то, что захотел сделать я в своей ракете. Он зажег в лаборатории лампу и попытался проверить, можно ли зарегистрировать «погоню» за ее светом. Лаборатория-то наверняка двигалась — она находилась на Земле, мчащейся по орбите вокруг Солнца. И Майкельсон придумал остроумный способ регистрации «погони». Но из его затеи ничего не вышло. Световой луч абсолютно не «чувствовал» движения Земли, мчался с точно одинаковой скоростью и вдоль движения Земного шара по орбите, и против, и под любым углом.

Так «несовместимое» совместилось! Стало экспериментальным фактом удивительное согласие двух «непримиримых» утверждений о движении и свете. Теперь будем называть их первым и вторым постулатами Эйнштейна. Первый — про относительность скоростей, второй — про независимость скорости света от движения лампы.

Первый постулат — главный. А второй с огромной убедительностью его подтверждает. Если раньше была надежда хоть с помощью света отличить «абсолютное» движение от «абсолютного» покоя, то с приходом Эйнштейна она исчезла.

И дело тут не только в свете. Не думайте, что для людей, зажмуривших глаза, физика меняется. Вместо света в формулировку второго постулата можно подставить радиоволны, тяготение, нейтрино, любое поле, распространяющееся со световой скоростью (а только такие поля и есть в природе), — постулат останется в силе. Словом, по Эйнштейну, никаким физическим экспериментом нельзя обнаружить «абсолютную» скорость. Ее просто нет. Мир таков, что в нем существуют только относительные скорости. И относительный покой.

В этом мире много непривычного. Главную его особенность Эйнштейн постиг, если верить биографам, «однажды утром, хорошо выспавшись». Это было открытие, перевернувшее привычный взгляд на все устройство природы — открытие относительности одновременности. Доказательство того удивительного факта, что события, одновременные для одного наблюдателя, должны быть неодновременны для другого наблюдателя, который движется относительно первого.

Отличия СТО от ньютоновской механики

Впервые новая теория потеснила 200-летнюю механику Ньютона. Это в корне изменило восприятие мира. Классическая механика Ньютона оказалась верной лишь в земных и близких к ним условиях: при скоростях намного меньше скорости света и размерах, значительно превышающих размеры атомов и молекул и при расстояниях или условиях, когда скорость распространения гравитации можно считать бесконечной.

Ньютоновские понятия о движении были кардинально скорректированы посредством нового достаточно глубокого применения принципа относительности движения. Время уже не было абсолютным (а начиная с ОТО — и равномерным).

Более того, Эйнштейн изменил фундаментальные взгляды на время и пространство. Согласно теории относительности, время необходимо воспринимать как почти равноправную составляющую (координату) пространства-времени, которая может участвовать в преобразованиях координат при изменении системы отсчета вместе с обычными пространственными координатами, подобно тому, как преобразуются все три пространственные координаты при повороте осей обычной трёхмерной системы координат.

Понятным языком о сложной теории относительности

Наверное, нет ни одной научной теории в мировой науке, которая бы подвергалась такой проверке, критики и сомнению, как теория относительности Альберта Эйнштейна.  Вот уже более ста лет она продолжает будоражить умы ученых физиков — теоретиков и математиков и прошла все испытания.

Нельзя сказать, что весь научный мир безапелляционно согласен с Эйнштейном. Так квантовая теория, объясняющая устройство мироздания на элементарном уровне совершенно не совместима с теоретическими основами гравитации теории относительности. Постулаты Эйнштейна утверждали, что черные дыры обладают гравитационными полями величиной стремящейся к бесконечности.

Но с этим категорически не согласен Paulo Freire (астрофизик, Германия). В своих отчетах совместно с научным руководителем в одном из самых авторитетных научных журналов Science.

Общая теория относительности, предложенная миру Эйнштейном, констатировала, что все объекты, имеющие массу непременно, искривляют пространства-времени. Нами же это воспринимается гак гравитация.

Один из главных постулатов теории относительности Эйнштейна гласит о том, что пространство и время не что иное, как одно из состояний материи, содержащее единство пространство и время. Рассмотрим в качестве примера ситуацию, когда металлический шар падает на бетонный пол, он воздействует на пол и образует вмятину, которая изменяет траекторию движения шарика на этом же бетонном полу.

Аналогично также изменяет вокруг себя (искажает пространство – время) — масса крупных объектов, таких как солнце. Планеты меньшей массы, такие как земля и другие двигаются (вращаются) по своим траекториям. Человечество определило это, как движение по орбитам.

Современная наука за сто лет значительно продвинулась вперед и обладает несравненно большими техническими возможностями, и конечно «Теория относительности»  проверяется на совершенно новом уровне.

Диаметр пульсара насчитывает всего двенадцать миль, но масса его при этом в два раза больше Солнца и вращается он со скоростью, двадцать пять оборотов в секунду.

https://youtube.com/watch?v=MRR_FSsoYIg

Физик Чарльз Уэнг подтвердил, что объект на таком незначительном пространстве и имеет такую сверхбольшую массу – обладает невероятной по силе гравитацией. Силы гравитации пульсара в триста миллиардов раз превышает гравитационное поле земли.

Условия в этом далеком космосе жесточайшие, находящие за гранью возможного восприятия, но при этом преодолевается сильное притяжение черной дыры. А сила притяжения черный дыры поглощает даже свет и не чего не отражает и не выпускает.

Ученые впервые проводят проверку теории гравитации Эйнштейна в далеком космосе, о чем сто лет назад невозможно было даже представить.  Эти звезды излучают гравитационные волны и постепенно теряют энергию, в результате этого они начнут все быстрее приближаться к друг другу и увеличивать скорость вращения.

Точные измерения системы звезд проводили при использовании нескольких телескопов. Полученные результаты совершенно точно подтвердили гипотезу Эйнштейна.

А первые подтверждения гипотез ученого Эйнштейна прошло через четыре года после его открытия. Это было сенсационное событие, проходившее во время полного солнечного затмения, и полностью подтвердило теорию Эйнштейна.

Его теория относительности, имеющая известную формулу E=mc2, где масса тела, умноженная на скорость света в квадрате равна энергии. Великий ученый утверждал, что при определенных обстоятельствах, масса имеет возможность превратиться в чистую энергию. Практическое (прикладное) применение этой теории на практики позволило создать атомное оружие. Работы великого ученого открыли двери к тайнам космоса и природы. Он стал прародителем новых направлений в науке, астрономии и физики элементарных частиц.

Согласно этой теории мы свами живем в четырёх мерном пространстве, но нам это сложно воспринимать. Мы только ощущаем некие измерения проекций четырех мерных объектов на пространство и конечно время. Эти объекты не меняют свои физические размеры при движении, но их проекции могут изменяться.

Как понять Общую теорию относительности?

Общую теорию относительности Эйнштейна можно выразить всего в 12 словах:«пространство-время говорит материи, как двигаться; материя говорит пространству-времени, как изгибаться». Но это краткое описание, сделанное физиком Джоном Уилером, скрывает более сложную и глубокую истину. Помимо квантовой теории, общая теория относительности является одним из двух столпов современной физики – нашей рабочей теории гравитации и очень большой теории планет, галактик и Вселенной в целом. Она является продолжением специальной теории относительности Эйнштейна – но настолько массивной, что ему потребовалось 10 лет, с 1905 по 1915 год, чтобы перейти от одной к другой.

Как пишет New Scientist, согласно специальной теории относительности (СТО) движение искривляет пространство и время. ОТО Эйнштейна объединила ее с принципом, отмеченным Галилеем более трех столетий назад: падающие объекты ускоряются с одинаковой скоростью независимо от их массы.

Вслед за Галилеем Исаак Ньютон показал, что это может быть верно только в том случае, если присутствует странное совпадение: инерционная масса, которая количественно определяет сопротивление тела ускорению, всегда должна быть равна гравитационной массе, которая количественно определяет реакцию тела на гравитацию. Нет никакой очевидной причины, почему это должно быть так, но ни один эксперимент никогда не разделял эти две величины.

Точно так же, как он использовал постоянную скорость света для построения специальной теории относительности, Эйнштейн объявил это принципом природы: принципом эквивалентности. Вооружившись этим и новой концепцией пространства и времени как переплетенного «пространства-времени», вы можете построить картину, в которой гравитация является лишь формой ускорения.

Массивные объекты искривляют пространство-время вокруг себя, заставляя предметы ускоряться по направлению к ним.

Хотя гравитация доминирует в больших космических масштабах и вблизи очень больших масс, таких как планеты или звезды, она на самом деле является самой слабой из четырех известных сил природы – и единственной, не объясненной квантовой теорией. Квантовая теория и общая теория относительности применяются в разных масштабах. Это мешает понять, что происходило в самые ранние моменты Большого взрыва, например, когда Вселенная была очень маленькой, а сила гравитации огромна. В другой ситуации, когда эти силы сталкиваются у горизонта событий черной дыры, возникают неразрешимые парадоксы.

Некоторые физики возлагают надежду на то, что однажды некая «теория всего» сможет объединить квантовую теорию и общую теорию относительности, хотя такие попытки, как теория струн и теория петлевой квантовой гравитации, до сих пор не принесли никаких результатов. Между тем ОТО Эйнштейна предсказала, что очень плотные скопления массы могут исказить пространство-время настолько, что даже свет не сможет вырваться из него. Теперь мы называем эти объекты «черными дырами», можем фотографировать «горизонт событий», который окружает этих космических монстров, и практически убеждены, что в центре каждой массивной галактики вращается сверхмассивная черная дыра.

Математические уравнения общей теории относительности Эйнштейна, проверенные снова и снова, в настоящее время являются наиболее точным способом предсказания гравитационных взаимодействий, заменив разработанные Исааком Ньютоном за несколько столетий до этого.

Но, возможно, самый большой триумф общей теории относительности наступил в 2015 году, когда были открыты гравитационные волны – рябь в пространстве-времени, вызванная движением очень массивных объектов. Сигнал о том, что две черные дыры соединились и слились воедино, стал триумфом кропотливой, терпеливой работы, проделанной международной командой исследователей лабораторий LIGO VIRGO. Подробнее о том, как эксперты ищут гравитационные волны сегодня, читайте в увлекательном материале Ильи Хеля. Так или иначе, разработка квантово-физической «версии» общей теории относительности остается постоянной целью современной физики.

Основные постулаты

Уравнения теории относительности: скорость, время и длинна объекта относительно механики Ньютона

Постоянство скорости света – к 1907 году были произведены эксперименты по измерению скорости света с точностью ±30 км/с (что было больше орбитальной скорости Земли) не обнаружившие её изменения в ходе года. Это стало первым доказательством неизменности скорости света, которое в последствии было подтверждено множеством других экспериментов, как экспериментаторами на земле, так и автоматическими аппаратами в космосе.

Принцип относительности – этот принцип определяет неизменность физических законов в любой точке пространства и в любой инерциальной системе отсчёта. То есть в независимости от того движетесь ли вы со скоростью около 30 км/с по орбите Солнца вместе с Землёй или в космическом корабле далеко за её пределами – ставя физический эксперимент вы всегда будете приходить к одним и тем же результатам (если ваш корабль в это время не ускоряется или замедляется). Этот принцип подтверждался всеми экспериментами на Земле, и Эйнштейн разумно счёл этот принцип верным и для всей остальной Вселенной.

Масса и энергия

Клио переменил профессию. Теперь он не бандит, а коммерсант. Поэтому наша очередная встреча с Клио — в Одессе на Привозе. Хитрый робот уговаривает багатого заграничного туриста, мультимиллионера, купить маленький прозрачно-розовый липкий предмет одесского производства и просит за него ни много ни мало — пять миллионов долларов. Этот предмет, по словам Клио, есть законсервированная энергия в количестве 125 миллионов киловатт-часов.

Богач не прочь запастись на черный день сверхъемким концентратом энергии, доводы Клио его убеждают (их содержание будет изложено ниже), и сделка вот-вот совершится. Но тут вырастает из-под земли вездесущий майор Прошкин и запрещает торговлю.

– Стыдно, гражданин Клио! — говорит он укоризненно. И конфискует прозрачно-розовый предмет, который оказывается обыкновенным леденцом.
– Я ему не врал…— мямлит разочарованный жулик.
– Знаю,— стальным голосом отвечает Прошкин,— но и не все сказали, что положено. Идите!

На этот раз ареста не последовало. Потому что Клио, как ни странно, говорил туристу чистую правду. Вернее, частицу чистой правды. Сейчас вы поймете, в чем дело.

Всем известно: толкнуть ядро труднее, чем бросить спичку. Массивное тело ускорить труднее, чем легкое. Ускорить — значит преодолеть инерцию тела, а мерой инерции (как известно всем шестиклассникам) служит масса. Теперь вспомним, что с увеличением относительной скорости тела разгон его становится все труднее (это доказала погоня на эскалаторе). А раз так, то можно считать: чем быстрее движется тело, тем больше его масса.

У капитана на ладони леденец. Масса его пять граммов. Для бакенщика этот леденец чуть-чуть массивнее, потому что движется относительно него. А для протона, несущегося в космических лучах, эта маленькая конфета весит десять килограммов — относительно протона леденец мчит со скоростью, близкой к световой. И наоборот, протоны, летящие в космических лучах, для нас с вами в сотни и тысячи раз массивнее тех, что пребывают в относительной неподвижности. Физики-экспериментаторы установили этот факт с полной достоверностью. Массы тел относительны! Так же как и скорости, и длительности, и расстояния. И как энергии.

Действительно, по мере разгона всякое тело обогащается энергией, истраченной на ускорение. И смотрите: растет энергия движения тела, растет и сопротивление дальнейшему ускорению, то есть инерция, масса. У тела, мчащегося почти со скоростью света, энергия безмерно велика и так же огромна масса. Сбавлена скорость тела — значит, уменьшена и его энергия, а вместе с ней и масса. Выходит, по энергии движущегося тела можно судить о его массе, по массе — об энергии. Та и другая изменяются вместе, одинаково. Напрашивается вывод: энергия и масса эквивалентны. Энергия и масса — две характеристики одного и того же явления — движения материи.

Тут есть тонкость. Когда бакенщик, взяв из рук капитана леденец, «остановит» его и отправит себе в рот, масса леденца не пропадет, пять граммов ее останутся. А энергия механического движения леденца относительно бакенщика исчезнет полностью. Энергии как будто нет, а масса сохранилась. Как это сочетать с выводом об их эквивалентности?

В предпоследней фразе — умышленная (с моей стороны) ошибка. Энергия у «оставленного» леденца не пропала. Потому что движение в нем не прекращено. Нет лишь механического перемещения леденца как целого тела. Зато есть (причем, относительно бакенщика!) беспрерывная тепловая пляска его атомов и молекул (заморозьте леденец — и он станет легче, правда, совершенно неуловимо). Есть движение электронов в атомах и между ними. Есть электрические, магнитные, ядерные силы, а они, как теперь доказано, тоже обусловлены движением — беспрерывным поглощением и испусканием микрочастиц.

Леденец (как и любое другое тело, будь то песчинка, пушинка, капля, гора, планета) лишь внешне спокоен. Внутри, в микромире своем, это клубок молниеносных вихрей, вибраций, сдвигов, порой очень своеобразных, не похожих на привычные нам механические движения. И конечно же, этот клокочущий круговорот материи, хоть он и невидим глазом, неощутим руками, — средоточие гигантской энергии, той самой, что эквивалентна «массе покоя» — массе «остановленного» леденца.

Творец теории относительности

Альберт Эйнштейн был еще молодым человеком, когда опубликовал основы теории относительности. Впоследствии ему самому становились ясны её недостатки и нестыковки. В частности, самой главной проблемой ОТО стала невозможность её врастания в квантовую механику, поскольку при описании гравитационных взаимодействий используются принципы, радикально отличающиеся друг от друга. В квантовой механике рассматривается взаимодействие объектов в едином пространстве-времени, а у Эйнштейна само это пространство формирует гравитацию.

Написание «формулы всего сущего» — единой теории поля, которая устранила бы противоречия ОТО и квантовой физики, было целью Эйнштейна на протяжении долгих лет, он работал над этой теорией до последнего часа, но успеха не достиг. Проблемы ОТО стали стимулом для многих теоретиков в поиске более совершенных моделей мира. Так появлялись теории струн, петлевая квантовая гравитация и множество других.

Личность автора ОТО оставила след в истории сравнимый со значением для науки самой теории относительности. Она не оставляет равнодушным до сих пор. Эйнштейн сам удивлялся, почему столько внимания уделялось ему и его работам со стороны людей, не имевших к физике никакого отношения. Благодаря своим личным качествам, знаменитому остроумию, активной политической позиции и даже выразительной внешности Эйнштейн стал самым знаменитым физиком на Земле, героем множества книг, фильмов и компьютерных игр.

Конец его жизни многими описывается драматически: он был одинок, считал себя ответственным за появление самого страшного оружия, ставшего угрозой всему живому на планете, его теория единого поля осталась нереальной мечтой, но лучшим итогом можно считать слова Эйнштейна, сказанные незадолго до смерти о том, что свою задачу на Земле он выполнил. С этим трудно спорить.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector