Диапазон частот

Установка радар детектора в машине

Место и положение установки радара-детектора принципиально важны, так как прямой обзор и отсутствие препятствий существенно улучшают его точность и функциональность, а также снижают количество ошибочных срабатываний.

  • Если ваш радар имеет моноблочную конструкцию, его можно установить на передней панели в салоне – перед ветровым стеклом.
  • Если конструкция комбинированная, то на приборной панели можно разместить только радарный индикатор, а приемный модуль спрятать под панелью.

Лицевая часть устройства должна быть развернута к водителю тыльная с приемником – вперед, точно по движению автомобиля. Оптимально будет установить прибор вместе с видеорегистратором в середине лобового стекла машины или на стойке зеркала заднего вида: у верхней его кромки (тогда он сможет принимать сигналы при движении по холмистой местности). Крепление у радаров обычно свое: кронштейны с защелками, присоски или липучки

Важно, чтобы обзору при установке радара-детектора не мешал сетевой провод от прикуривателя, который будет отвлекать внимание при движении

Таблица звуковых частот музыкальных инструментов от Sound On Sound

Таблица звуковых частот состоит из двух частей. Первая часть представляет собой диаграмму «Частоты инструментов», в которой приведена информация о частотных диапазонах ряда распространенных музыкальных инструментов. Инструменты разделены на пять групп — человеческий голос, перкуссионные инструменты, гитара и бас, струнные, духовые. Дополнительно диаграмма отражает диапазоны звучания приведенных инструментов, для чего иллюстрация дополняется списком октав и названиями и частотой входящих в них звуков.

Таблица звуковых частот. Скриншот первой части.

Вторая часть — «Субъективный характер звука» — представляет собой таблицу, в которой приведены основные частоты для эквализации популярных музыкальных инструментов, а также даны сравнительные описания этих частот. Информация из таблицы наглядно показывает, как сделать звук популярных инструментов четче, резче, яснее или разборчивее.

При этом создатели отмечают, что не стремились создать исчерпывающее руководство по эквализации, а хотели создать наглядный гайд, который поможет музыкантам и звукорежиссерам при записи и сведении музыки.

Таблица звуковых частот. Скриншот.

Документ содержит поля для отреза и другую полезную для типографов информацию. Отметим, что таблицу лучше печатать в формате А3, так как при печати на листе А4 теряется разборчивость содержания из-за обилия мелкого текста.

Классификация по способу распространения

Прямые волны — радиоволны, распространяющиеся в свободном пространстве от одного предмета к другому, например от одного космического аппарата к другому, в некоторых случаях, от земной станции к космическому аппарату и между атмосферными аппаратами или станциями. Для этих волн влиянием атмосферы, посторонних предметов и Земли можно пренебречь.

Земные или поверхностные — радиоволны, распространяющиеся вдоль сферической поверхности Земли и частично огибающие её вследствие явления дифракции. Способность волны огибать встречаемые препятствия и дифрагировать вокруг них, как известно, определяется соотношением между длиной волны и размерами препятствий: чем меньше длина волны, тем слабее проявляется дифракция. По этой причине волны диапазона УВЧ и более высокочастотных диапазонов очень слабо дифрагируют на поверхности земного шара и дальность их распространения в первом приближении определяется расстоянием прямой видимости (прямые волны).

Тропосферные — радиоволны диапазонов ОВЧ и УВЧ, распространяющиеся за счёт рассеяния на неоднородностях тропосферы на расстояние до 1000 км.

Ионосферные или пространственные — радиоволны длиннее 10 м, распространяющиеся вокруг земного шара на сколь угодно большие расстояния за счёт однократного или многократного отражения от ионосферы и поверхности Земли.

Направляемые — радиоволны, распространяющиеся в направляющих системах (радиоволноводах).

Частотные диапазоны российских операторов связи

Распределение полос радиочастот между операторами и радиослужбами указано в Постановлении Правительства РФ №1203-47 от 18.09.2019г.

Для своей деятельности российские операторы используют абонентские и технические диапазоны частот. К последним относятся радиорелейные линии, с помощью которых базовые станции сотовых операторов передают информацию между собой. Для этого выделяют частоты в диапазоне 5-80 ГГц. Ваши мобильные устройства работают на других каналах, поэтому радиорелейные линии с ними не взаимодействуют.

Абонентские диапазоны делятся на всем известные: GSM-900/1800 (2G), UTMS (3G), LTE (4G), 5G и промежуточные технологии типа GPRS (2,5G), EDGE (2,75G) и HDSPA (3,5G). Они используют диапазоны частот от 790 до 2700 МГц. Чем ниже частота, тем больше зона покрытия передатчика, чем выше частота, тем лучше радиоволны огибают препятствия и проникают сквозь стены.

Рассмотрим подробнее стандарты и протоколы передачи данных сотовых операторов России.

Частоты GSM (2G) в России

Первую цифровая, а не аналоговую, технологию передачи данных 2G запустили в 1991 году в Финляндии. В Россию она пришла лишь в конце 90-ых. Сейчас GSM в России делится на два вида:

  • GSM-900 работает в двух диапазонах:
    • базовые станции мобильных операторов используют частоты 925-960 МГц;
    • абонентские устройства используют частот 890-915 МГц;
  • GSM-1800:
    • базовые станции мобильных операторов используют частоты 1805-1880 МГц;
    • абонентские устройства используют частот 1710-1785 МГц.

GSM-1800 чаще использую в городских условиях, радиоволны лучше проникают в квартиры и огибают постройки.

GSM-900 актуальнее для сельских поселений и загородных трасс потому что передатчик покрывает большую зону.

Частоты UMTS (3G) в России

В 2007 году сотовые операторы большой тройки получили лицензии на использование технологии UMTS (3G) в России. Сейчас они работают в 2 диапазонах частот:

  • 2110-2170 МГц для базовых станций и 1920-1980 МГц для абонентских устройств. Этот диапазон появился первым и получил наибольшее распространение в России. Для некоторых операторов он остается единственным для населенных пунктов с населением до миллиона человек.
  • 925-960 МГц для базовых станций и 880-915 МГц для абонентских устройств. Этот диапазон начали использовать позже, чтобы увеличить зону покрытия и минимизировать воздействие других РЭС. На этих частотах также работает GSM-900. Частоты регистрируются через ФГУП «Главный радиочастотный центр» так, чтобы технологии и операторы не могли помешать друг другу. UMTS-900 в основном использует ПАО «Вымпел-Коммуникации» (Билайн).

Частоты LTE (4G) в России

Несмотря на то, что о создании 4G в Европе заговорили 11 лет назад, в Российских регионах стандарт закрепился лишь 5 лет назад. Всего в России разрешено использовать 4 диапазона для технологии LTE (4G):

  • 2600-2700 МГц для базовых станций и 2500-2600 МГц для абонентских устройств. Диапазон появился первым для 4G в России и до сих пор наиболее распространен. Его используют все операторы федеральной четверки.
  • 790-820 МГц для базовых станций и 820-880 МГц для абонентских устройств. Второй по распространенности диапазон. Его активно используют ПАО «МегаФон», ООО «Т2 Мобайл» и ПАО «Вымпел-Коммуникации» (Билайн)
  • 1800-1880 МГц для базовых станций и 1710-1785 МГц для абонентских устройств. Этим диапазоном пользуются все операторы связи, но особенно его предпочитает ПАО «Мобильные ТелеСистемы».
  • 450-457 МГц для базовых станций и 460-467 МГц для абонентских устройств. Диапазон запущен для развития сетей беспроводного широкополосного доступа в РФ, его использует ООО «Т2-Мобайл».

Частоты 5G в России

Технология 5G уже работает в нескольких странах мира. В России она находится на стадии тестирования. Для этого Государственная комиссия по радиочастотам выделила диапазон 25-29,5 ГГц. Указанные частоты не пригодны для коммерческого использования и будут использоваться только в тестовом режиме.

Вокруг постоянных частот 5G в России до сих пор ходят споры. Во всем мире для этой технологии выделен диапазон 3,4-3,8 ГГц. В нашей стране это невозможно, потому что тогда 5G будет мешать стратегическим предприятиям и государственным ведомствам Российской Федерации. По данным СМИ, Президент России согласился с письмом Совета Безопасности РФ о том, что диапазон 3,4-3,8 ГГц следует оставить за государством.

В качестве альтернативы закрытому правительственному диапазону, Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации предложило другой – 4,4-4,99 ГГц. Даже если какое-то конкретное решение по этому поводу уже принято, никаких официальных заявлений и документов до сих пор нет.

Оборудование для работы с LTE от МегаФона

Нередко жители России жалуются, что гаджеты с LTE в стране не работают. Почему так? Если техника произведена для продажи в других странах, то действительно смартфоны могут не распознавать сети 4G. Band 7, Band 38, Band 20 — вот частоты LTE от МегаФон в РФ. Чтобы избежать неприятностей, перед покупкой убедитесь, что устройство работает в перечисленных диапазонах.

Что точно будет работать в российских сетях 4G без казусов, так это смартфон МегаФон 4G Turbo. Он довольно незатейливый: работает на ОС Android 4.0, экран — удобные 4,5 дюйма. Встроены беспроводные модули: Bluetooth, GPS/ГЛОНАСС, 3G, 4G (LTE) и Wi-Fi. Оперативки немного — всего 1 Гб, но для установки базовых приложений (пара игрушек, соцсети, фоторедакторы) хватит. В вашем распоряжении основная камера на 8 Мп и слабенький аккумулятор на 1780 мАч. Аппарат ориентирован на нетребовательных пользователей и презентует все преимущества LTE от МегаФона.

Смартфоны от МегаФон с поддержкой 4G находятся в бюджетном сегменте для “новичков”

Если ищите лошадку помощнее, обратите внимание на технику от Samsung, Apple, Asus, Huawei, ZTE или Xiaomi. Кроме телефонов, МегаФон предлагает своим абонентам широкий спектр оборудования:

  • модемы МегаФон LTE — например, модель М150-20 может разгонять скорость до 150 Мбит в секунду;
  • мобильные и стационарные роутеры с поддержкой LTE;
  • роутеры для офисов — не только для доступа в интернет, но и организации внутренней связи;
  • планшетные ПК, работающие в сетях нового поколения.

Не зацикливайтесь только на продукции перечисленных брендов. Если устройство поддерживает российские частоты LTE от МегаФона, и вам дают на это гарантию, — покупайте. Что касается настройки МегаФон LTE, то не понадобиться ничего сверхъестественного — если гаджет работает в сетях 4G, то он автоматически определит сигнал и зарегистрируется в сети. Если что, можно самостоятельно указать необходимый стандарт сетей (от 2G до 4G или авторежим). Это действие может пригодиться, когда автопоиск определенной сети, сигнал которой очень слабый в данной местности, затрудняет выход в сеть вообще. Если с сигналом 4G нет проблем, доверьтесь автоматическому выбору устройства.

Пределы

На частотных границах спектра радиочастот являются предметом конвенции в физике и несколько произвольны. Поскольку радиоволны относятся к категории электромагнитных волн с самой низкой частотой , нижнего предела частоты радиоволн не существует. На высокочастотном конце радиоспектр ограничен инфракрасным диапазоном. Граница между радиоволнами и инфракрасными волнами определяется на разных частотах в разных областях науки. Терагерцовый диапазон , от 300 гигагерц до 3 ТГц, может рассматриваться либо как микроволны или инфракрасные. Это самый высокий диапазон, классифицируемый Международным союзом электросвязи как радиоволны , но ученые-спектроскописты считают эти частоты частью дальнего инфракрасного диапазона.

В практических пределах радиочастотного спектра, частоты , которые полезны практически для радиосвязи , определяются технологическими ограничениями , которые вряд ли будет преодолено. Таким образом, хотя радиочастотный спектр становится все более перегруженным, существует небольшая перспектива появления дополнительной полосы частот, помимо той, которая используется в настоящее время.

Самые низкие частоты, используемые для радиосвязи, ограничены увеличением размера необходимых передающих антенн . Размер антенны, необходимой для эффективного излучения радиосигнала, увеличивается пропорционально длине волны или обратно пропорционально частоте. Ниже 10 кГц (длина волны 30 км) требуются приподнятые проволочные антенны диаметром в несколько километров, поэтому очень немногие радиосистемы используют частоты ниже этой. Второй предел — это уменьшающаяся полоса пропускания, доступная на низких частотах, что ограничивает скорость передачи данных. Ниже 30 кГц модуляция звука непрактична, и используется только передача данных с низкой скоростью передачи данных. Самые низкие частоты, которые использовались для радиосвязи, составляют около 80 Гц в системах связи подводных лодок ELF , построенных военно-морскими силами нескольких стран для связи со своими подводными лодками на глубине сотен метров под водой. В них используются огромные наземные дипольные антенны длиной 20–60 км, возбуждаемые мегаваттами мощности передатчика, и передаются данные с чрезвычайно низкой скоростью около 1 бит в минуту (17 , или около 5 минут на символ).

Самые высокие частоты, используемые для радиосвязи, ограничены поглощением микроволновой энергии атмосферой. По мере увеличения частоты выше 30 ГГц (начало диапазона миллиметровых волн ) атмосферные газы поглощают все большее количество энергии, поэтому мощность луча радиоволн экспоненциально уменьшается с расстоянием от передающей антенны. На частоте 30 ГГц полезная связь ограничена примерно 1 км, но с увеличением частоты диапазон, на котором могут приниматься волны, уменьшается. В терагерцовом диапазоне выше 300 ГГц радиоволны ослабляются до нуля в пределах нескольких метров, поэтому атмосфера практически непрозрачна.

Как освободить частоты для 5G?

Для того, чтобы освободить частоты от занимающих его пользователей, есть несколько различных путем. Можно подождать, пока завершить срок действия разрешений на использование соответствующих РЭС либо окончится срок эксплуатации оборудования. Но такой подход требует времени.

Можно перевести РЭС в другой частотный диапазон или в другую географическую локацию-но оба варианта являются достаточно трудоемкими. Есть также пути частичного высвобождения частот за счет перехода к более современным технологиям, перевод пользователей РЭС на альтернативные технологии (например, проводные) либо модернизация РЭС с целью исключения помех.

Наиболее же эффективный путь, как считают в НИИР — это досрочное прекращение работы с РЭС с выплатой его владельцам компенсаций или альтернативным вариантом продолжения работы соответствующего оператора. Но Закон «О связи» и другие действующие на сегодняшний день нормативные акты не позволяют досрочно принудительно прекратить действия радиочастотных присвоений в интересах гражданских потребителей.

В связи с этим, как полагают в НИИР, необходим комплекс экономических, организационных и конструктивно-технических мер, направленных на внедрение перспективных методов перераспределения радиочастотного спектра, его высвобождение и применение современных решений динамического доступа к совместно используемым полосам частот.

Что лучше: 2,4 ГГц или 5 ГГц?

Между маршрутизаторами 2,4 ГГц и 5 ГГц есть некоторые отличия:

  • Дальность действия: даже если 5 ГГц обещает стабильный сигнал, дальность действия у этой частоты меньше по сравнению с 2,4 ГГц. Поэтому Wi-Fi в диапазоне 5 ГГц стоит использовать в помещениях, где он точно достигнет каждой комнаты. В качестве дополнительной поддержки можно использовать ретрансляторы.
  • Поддержка: для того, чтобы маршрутизатор и приемник могли работать с сигналом на частоте 5 ГГц, они должны поддерживать стандарт 802.11 n или 802.11 ac. Если устройство не поддерживает этот стандарт, можно считать, сеть 5 ГГц не будет работать.
  • Помехи: сети с частотой 5 ГГц не так сильно подвержены помехам. Например, в многоквартирных домах можно найти много беспроводных сетей, которые работают в диапазоне 2,4 ГГц. А вот частота 5 ГГц обычно используется значительно реже.
  • Почему 5 ГГц: если Wi-Fi работает нестабильно, слишком медленно или рядом находится много соседских сетей, вам лучше использовать 5 ГГц.

История

Спецификации любого поколения связи, как правило, относятся к изменению фундаментального характера обслуживания, несовместимым технологиям передачи, более высоким пиковым битрейтом, новыми полосами частот, более широким каналом полосы пропускания, выражаемой в единицах частоты — герцах, а также большей ёмкостью для множественной одновременной передачи данных (более высокой системой спектральной эффективности, измеряемой в бит/с/Гц/сектор).

Новые поколения мобильной связи начинали разрабатываться практически через каждые десять лет с момента перехода от разработок первого поколения аналоговых сотовых сетей в 1970-х годах (1G) к сетям с цифровой передачей (2G) в 1980-х годах. От начала разработок до реального внедрения проходило достаточное количество времени (например, сети 1G были внедрены в 1984 году, сети 2G — в 1991 году).
В 1990-х годах начал разрабатываться стандарт 3G, основанный на методе множественного доступа с кодовым разделением каналов (CDMA); он был внедрен только в 2000-х годах (в России — в 2002 году). Сети поколения 4G, основанные на IP-протоколе, стали разрабатываться в 2000 году и начали внедряться во многих странах с 2010 года.

В 2000 году, когда только шло освоение технологии связи третьего поколения 3G, один из ведущих производителей персональных компьютеров Hewlett-Packard и японский гигант сотовой связи NTT DoCoMo объявили о начале совместных исследований по разработке технологий передачи мультимедиа-данных в беспроводных сетях четвёртого поколения. Помимо них, разработки вели Ericsson и AT&T совместно с Nortel Networks.

Впоследствии появилось два действительно пригодных к реализации стандарта: LTE и WiMAX, которые, по мнению IMT Advanced, и стали новой эрой в развитии сети (сумятицу в умах конечных пользователей может создавать тот факт, что эти две версии несовместимы, и нельзя точно предсказать, как они будут конкурировать и какая из них в итоге доминирует).

LTE

Стандарт LTE разрабатывался в рамках 3GPP (The 3rd Generation Partnership Project) как продолжение CDMA и UMTS и первоначально не относился к четвёртому поколению мобильной связи. Международным союзом электросвязи как стандарт связи, отвечающим всем требованиям беспроводной связи четвёртого поколения, был избран десятый релиз LTE — LTE Advanced, который впервые был представлен японской компанией NTT DoCoMo. Так как данный стандарт можно реализовать на существующих сотовых сетях, то он стал более популярен у операторов сотовой связи. В апреле 2008 года компания Nokia заручилась поддержкой ряда компаний (Sony Ericsson, NEC) для развития стандарта LTE и придания этому стандарту конкурентоспособности против WiMAX. В том же году аналитическая компания Analysys Mason спрогнозировала увеличение роста потребности сотовых технологий, таких как LTE, нежели WiMAX.

Первая коммерческая сеть LTE была запущена 14 декабря 2009 года шведской телекоммуникационной компанией TeliaSonera совместно с Ericsson, в Стокгольме и Осло.

WiMAX

Стандарт WiMAX (или IEEE 802.16) разрабатывается созданной в июне 2001 года организацией WiMAX Forum и является продолжением беспроводного стандарта Wi-Fi, альтернативой выделенным линиям связи и DSL. У стандарта WiMAX много версий, но преимущественно они подразделяются на фиксированный WiMAX (спецификация IEEE 802.16d, также известная как IEEE 802.16-2004, которая была утверждена в 2004 году) и мобильный WiMAX (спецификация IEEE 802.16e, более известная как IEEE 802.16-2005, которая была утверждена в 2005 году). По названиям стандартов ясно, что фиксированный WiMAX предоставляет услуги только «статичным» абонентам после установления и закрепления соответствующего оборудования, а мобильный WiMAX предоставляет возможность подключения пользователям, передвигающимся в зоне покрытия со скоростью до 115 км/час. Преимуществом стандарта WiMAX было то, что он гораздо раньше стандарта LTE стал пригоден к коммерческой эксплуатации.
В настоящее время компаниями, составляющими WiMAX Forum, являются такие известные производители, как Intel Corporation, Samsung, Huawei Technologies, Hitachi, и многие другие.

Первую сеть, основанную на технологии WiMAX, построила в Канаде компания Nortel, 7 декабря 2005 года.
Через два дня услуги беспроводного широкополосного доступа в сеть интернет стала предоставлять украинская компания «Украинские новейшие технологии» (тем самым став первой в странах СНГ), на основе микросхем Intel PRO/Wireless 5116.

Радиоволны сверхвысоких частот (СВЧ)

Сверхвысоких частот диапазон, частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров.

Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн.

Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами.

К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров.

Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.

ЭМИ может быть непрерывным или прерывистым (импульсным). Последний режим позволяет создавать значительную мощность в каждом отдельном импульсе. Электромагнитное поле характеризуется векторами напряженности электрического (Е) и магнитного (Н) полей. При частоте колебаний ниже 300 мГц в качестве характеристики ЭМ-поля принимается силовая характеристика — напряженность электрического поля, В/м или напряженность магнитного поля — А/м.

При частоте колебаний выше 300 мГц поле оценивается энергетической характеристикой — плотность потока энергии (ППЭ), Вт/м кв. (или ее производными мВт/см2, мкВт/см2).
Для количественной оценки поглощенной энергии введено понятие удельной поглощенной мощности — УПМ (SAR — specific absorpion rate — американских авторов).

Под УПМ понимается количество поглощаемой мощности приходящейся на единицу массы тела, то есть — это усредненная величина, характеризующая скорость поступления энергии СВЧ-поля в поглощающее тело и представляемая как мощность отнесенная к объему — Вт/м3(мВт/см3) или массе — Вт/кг (мВт/г).

Установлено, что предельной для терморегуляции человека является 4 Вт/кг, а ПДУ — 0,4 Вт/кг.
Проблема метрологической оценки поглощенной человеком ЭМ мощности (и энергии) достаточно сложна.

Военные спутниковые системы в диапазоне 3,4-3,8 ГГц

Среди спецпотребителей системы спутниковой связи в диапазоне 3,4-3,8 ГГц используют Минобороны и ФСО. Военное ведомство обладает тремя собственными спутниками «Молния», а также использует гражданские спутниковые группировки («Радуга», «Ямал», «Экспресс»), работающие в данном диапазоне.

Минобороны обладает 1,4 тыс. земными станциями спутниковой связи, из которых 900 относятся к новому парку, 500-к старому. Основу станций нового парка составляют станции базовых комплексов второго поколения, из которых 30% являются стационарными, 70% — подвижными.

Типовой сегмент резервной сети спутниковой связи Минобороны состоит из телепорта, включающего центральные земные станции (ЦЗС), и терминальные земные станции (ТЗС), которые в настоящее время работают через коммерческие спутники. ЦЗС является ведущим функциональным элементом резервной сети, обеспечивая функционирование, контроль и управление подсетями резервной сети, а также взаимодействие с внешними сетями передачи данных.

Сейчас развернуто 700 ТЗС, из которых примерно половина являются мобильными. Ожидается, что по мере развития военной спутниковой группировки «Благовест», не менее 1 тыс. ТЗС будут функционировать в С-диапазоне.

Радиосистемы: основные разновидности

На сегодняшний день производители предлагают два функциональных варианта беспроводных радиосистем:

VHF — низкочастотное оборудование;

UHF — высокочастотные модели радиомикрофонов.

О каждом из видов следует поговорить более детально.

VHF-радиосистемы

Данное оборудование — наиболее бюджетное. Микрофон, приемник и передатчик настроены на передачу и трансляцию звуковых волн в ограниченном низкочастотном диапазоне — примерно от 30 до 300 МГц. Низкая цена обуславливается тем, что для передачи сигнала требуется только одна антенна.

Такой диапазон применяется современными рациями, телефонами беспроводного типа, телевизионными каналами, игрушками на радиоуправлении. Существенный недостаток — многочисленные радиочастотные наводки, случающиеся при использовании данного типа оборудования.

Радиосистемы UHF

Наконец, радиомикрофоны UHF — оборудование, функционирующее в высокочастотном диапазоне. В среднем модели обеспечивают комфортную работу в диапазоне от 300 до 3000 МГц. Количество радионаводок здесь уменьшается благодаря тому, что за счет более короткой волновой длине удается обеспечить меньшее использование энергии. Кроме того, UHF микрофонные модели можно использовать в большем количестве без опасений за возникающие радионаводки. Это серьезное преимущество при проведении массовых мероприятий, где необходим не один, не два и даже не три микрофона.

Однако и здесь есть свой небольшой недостаток. Микрофоны UHF за счет меньшей волновой длины имеет одновременно и меньший радиус действия. Кроме того, лучшее место для их использования — это открытое пространство. Следует учитывать, что маленькие волны постоянно ударяются о препятствия на своем пути, отражаясь от предметов и создавая помехи.

Изначально VHF пользовались большей популярностью из-за невысокой цены. Однако сейчас купить радиосистему UNF можно по самой оптимальной цене. Например, такие модели предлагает бренд IMG Stage Line. Это современные системы высокочастотного уровня, отличающиеся достаточно демократичной стоимостью и хорошей производительностью.

Радиомикрофоны: FM и IR разновидности

Существует две ключевых разновидности современных радиомикрофонов:

FM — классический вариант оборудования, использующий определенно частотные волны для передачи беспроводного сигнала. Наиболее актуальный частотный спектр — от 3 кГц до 300 000 МГц;

IR — инфракрасный микрофон, передающий сигнал посредством электромагнитного излучения, где волна является длиннее световой волны, но в то же время короче радиоволны.

FM-микрофоны менее надежны в плане безопасности, чем радиомикрофоны с инфракрасным излучением. Радиосигнал перехватывается намного легче

Это очень важно для систем, где используется максимум конфиденциальности. Конечно, современные технологии позволяют схватить и ИК сигнал, однако все же сделать это более трудно

Но для ИК микрофонов необходимо намного больше различного оборудования, чтобы покрыть большие площади передачи сигнала. Как следствие — менее комфортная и более дорогостоящая работа с оборудованием.

Особенности построения техники СВЧ

Чтобы получить разрешение на развёртывание сетей беспроводного доступа порой ведутся настоящие «корпоративные войны» между операторами мобильных сетей связи.

Почему микроволновое излучение используется в системах радиосвязи, если оно не обладает такой дальностью распространения, как, например, длинные волны?

Причина в том, что чем выше частота излучения, тем больше информации можно передавать с его помощью.

К примеру, многие знают, что оптоволоконный кабель обладает чрезвычайно высокой скоростью передачи информации исчисляемой терабитами в секунду.

Все высокоскоростные телекоммуникационные магистрали используют оптоволокно. В качестве переносчика информации здесь служит свет, частота электромагнитной волны которого несоизмеримо выше, чем у микроволн. Микроволны в свою очередь имеют свойства радиоволн и беспрепятственно распространяются в пространстве. Световой и лазерные лучи сильно рассеиваются в атмосфере и поэтому не могут быть использованы в мобильных системах связи.

У многих дома на кухне есть СВЧ–печь (микроволновка), с помощью которой разогревают пищу.

Работа данного устройства основана на поляризационных эффектах микроволнового излучения. Следует отметить, что разогрев объектов, с помощью СВЧ–волн происходит в большей степени изнутри, в отличие от инфракрасного излучения, которое разогревает объект снаружи внутрь.

Поэтому нужно понимать, что разогрев в обычной и СВЧ–печи происходит по-разному. Также микроволновое излучение, например, на частоте 2,45 ГГц способно проникать внутрь тела на несколько сантиметров, а производимый нагрев ощущается при плотности мощности в 20 – 50 мВт/см2 при действии излучения в течение нескольких секунд.

Понятно, что мощное СВЧ–излучение может вызывать внутренние ожоги, так как разогрев происходит изнутри.

На частоте работы микроволновки, равной 2,45 Гигагерцам, обычная вода способна максимально поглощать энергию сверхвысокочастотных волн и преобразовывать её в тепло, что, собственно, и происходит в микроволновке.

В то время пока идут неутихающие споры о вреде СВЧ-излучения военные уже имеют возможность проверить на деле так называемую «лучевую пушку».

Так в Соединённых штатах разработана установка, которая «стреляет» узконаправленным СВЧ-лучём.

Установка на вид представляет собой что-то вроде параболической антенны, только невогнутой, а плоской.

Диаметр антенны довольно большой – это и понятно, ведь необходимо сконцентрировать СВЧ-излучение в узконаправленный луч на большое расстояние. СВЧ-пушка работает на частоте 95 Гигагерц, а её эффективная дальность «стрельбы» составляет около 1 километра. По заявлениям создателей – это не предел.

Вся установка базируется на армейском хаммере.

По словам разработчиков, данное устройство не представляет смертельной угрозы и будет применяться для разгона демонстраций. Мощность излучения такова, что при попадании человека в фокус луча, у него возникает сильное жжение кожи. По словам тех, кто попадал под такой луч, кожа будто бы разогревается очень горячим воздухом. При этом возникает естественное желание укрыться, сбежать от такого эффекта.

Действие данного устройства основано на том, что микроволновое излучение частотой 95 ГГц проникает на пол миллиметра в слой кожи и вызывает локальный нагрев за доли секунды.

Этого достаточно, чтобы человек, оказавшийся под прицелом, ощутил боль и жжение поверхности кожи. Аналогичный принцип используется и для разогрева пищи в микроволновой печи, только в микроволновке СВЧ-излучение поглощается разогреваемой пищей и практически не выходит за пределы камеры.

На данный момент биологическое воздействие микроволнового излучения до конца не изучено.

Поэтому, чтобы не говорили создатели о том, что СВЧ-пушка не вредна для здоровья, она может причинить вред органам и тканям человеческого тела.

Стоит отметить, что СВЧ-излучение наиболее вредно для органов с медленной циркуляцией тепла – это ткани головного мозга и глаз.

Ткани мозга не имеют болевых рецепторов, и почувствовать явное воздействие излучения не удастся. Также с трудом вериться, что на разработку «отпугивателя демонстрантов» будут отпускаться немалые деньги – 120 миллионов долларов. Естественно, это военная разработка. Кроме этого нет особых преград, чтобы увеличить мощность высокочастотного излучения пушки до такого уровня, когда его уже можно использовать в качестве поражающего оружия.

Также при желании её можно сделать и более компактной.

В планах военных создать летающую версию СВЧ-пушки. Наверняка её установят на какой-нибудь беспилотник и будут управлять им удалённо.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector